
 Explore Features Enterprise Pricing

Clone this wiki locally

NOOBS partitioning explained
Ankou edited this page on Jan 9 · 5 revisions

NOOBS partitioning (and booting)
explained
The multiple partitions that NOOBS divides your SD card into (at least 5) can be quite
overwhelming and confusing. This page will try and explain how it all works, and illustrate how
NOOBS differs from the 'traditional' standalone images.

Non-NOOBS partitioning

Before you can understand how NOOBS partitioning works, you need to understand how
standalone partitioning works on the Raspberry Pi, so go and read that page if you haven't
already.

More partition naming theory
For historical reasons (only 4 'slots' in the partition table), hard-drives and SD cards can only have
a maximum of 4 primary partitions. To work around that limitation, one of those primary partitions
can optionally be an extended partition. An extended partition can contain an unlimited number
of logical partitions inside it. Under Linux, the primary partitions are always numbered 1-4 (i.e.
seen as /dev/mmcblk0p1 - /dev/mmcblk0p4 on the Pi), and any logical partitions are always
numbered 5 and above (i.e. seen as /dev/mmcblk0p5 and above on the Pi).

NOOBS partitioning

When NOOBS is first copied to a FAT-format SD card, there's just a single partition taking up all
the space on the card, and this is where the files from the NOOBS zipfile get written to. In tabular
form it looks like:

Primary
partition

Logical
partition

Type Label Contents

1 FAT
New
Volume

NOOBS boot files & initramfs, OS
recovery images

The only difference between NOOBS and NOOBS lite is that NOOBS lite doesn't include any OS
recovery images.

NOOBS bootup (low-level)

 Sign up Sign inThis repository Search

133 767 168 Watch Star Forkraspberrypi / noobs

 Code Issues 60 Pull requests 21 Wiki Pulse Graphs

 Pages 3

Home

NOOBS partitioning explained

Standalone partitioning
explained

https://github.com/raspberrypi/noobs.wiki.git

 Clone in Desktop

https://github.com/explore
https://github.com/features
https://enterprise.github.com/
https://github.com/pricing
https://github.com/raspberrypi/noobs/wiki/NOOBS-partitioning-explained/_history
https://github.com/raspberrypi/noobs/wiki/Standalone-partitioning-explained
https://en.wikipedia.org/wiki/Master_boot_record
https://github.com/
https://github.com/join
https://github.com/login?return_to=%2Fraspberrypi%2Fnoobs%2Fwiki%2FNOOBS-partitioning-explained
https://github.com/raspberrypi/noobs/watchers
https://github.com/raspberrypi/noobs/stargazers
https://github.com/raspberrypi/noobs/network
https://github.com/login?return_to=%2Fraspberrypi%2Fnoobs
https://github.com/login?return_to=%2Fraspberrypi%2Fnoobs
https://github.com/login?return_to=%2Fraspberrypi%2Fnoobs
https://github.com/raspberrypi
https://github.com/raspberrypi/noobs
https://github.com/raspberrypi/noobs
https://github.com/raspberrypi/noobs/issues
https://github.com/raspberrypi/noobs/pulls
https://github.com/raspberrypi/noobs/wiki
https://github.com/raspberrypi/noobs/pulse
https://github.com/raspberrypi/noobs/graphs
https://github.com/raspberrypi/noobs/wiki
https://github.com/raspberrypi/noobs/wiki/NOOBS-partitioning-explained
https://github.com/raspberrypi/noobs/wiki/Standalone-partitioning-explained
https://mac.github.com/

When the Raspberry Pi is powered on with a NOOBS card inserted, it:

1. Loads and runs bootcode.bin from the FAT-format /dev/mmcblk0p1 , exactly as it does for
standalone images. (This behaviour is built into the BCM2835's internal firmware on all Pis,
and so can't be changed.)

2. bootcode.bin then spots that start.elf is missing, so it loads and runs recovery.elf
instead.

3. Running recovery.elf then switches the firmware into "NOOBS mode" - it uses
 recovery.img instead of kernel.img , recovery.cmdline instead of cmdline.txt , and it
sets the root filesystem to recovery.rfs .

4. recovery.elf then reads recovery.cmdline and loads and runs recovery.img (the Linux
kernel), passing it the entire command-line that it read from recovery.cmdline and telling it
to load recovery.rfs as the root filesystem (an initramfs containing various scripts and the
NOOBS GUI application).

5. What happens next depends on which 'mode' NOOBS is operating in...

NOOBS bootup (setup mode)

If runinstaller is present in the kernel command-line, then this must be the first time NOOBS
has been booted, so it enters 'setup mode'. It then:

1. Automatically shrinks the first (and only) partition /dev/mmcblk0p1 , making it just large
enough to hold whatever files it contains, and labels it as 'RECOVERY'. For NOOBS lite this
partition will have a size of approximately XMB; for NOOBS this partition will have a size of
approximately XGB.

2. Creates a new large empty extended partition /dev/mmcblk0p2 , using up the vast majority of
the remaining card space.

3. Creates a new small (32MB) ext4-format partition /dev/mmcblk0p3 at the end of the card,
and labels it as 'SETTINGS'. This is used to store files telling NOOBS which OSes are
installed (and what partitions they're installed on), which OS should be loaded by default,
which language/keyboard NOOBS should use, etc.

4. Removes runinstaller from recovery.cmdline to prevent this process from being
triggered again.

The settings are stored on a small auxiliary partition rather than the same /dev/mmcblk0p1
partition as everything else. This is because of the NOOBS 'prime directive' - "NOOBS never
writes to the first FAT partition. FAT partition the first, NOOBS no writee...". By never writing
anything to the first partition (after the 'setup mode' has finished), this ensures that the first
partition can never become corrupted; and so NOOBS 'recovery mode' will always be accessible
(to allow OSes to be re-installed), no matter what happens to the rest of the SD card.

This then changes the partitions to:

Primary
partition

Logical
partition

Type Label Contents

1 FAT RECOVERY
NOOBS boot files & initramfs,
OS recovery images

2 extended Any logical partitions

3 ext4 SETTINGS NOOBS settings

NOOBS bootup (recovery mode)

If NOOBS detects that no Operating Systems have been installed yet, or if the user is pressing the
Shift key (or any of the other trigger actions are in effect), NOOBS enters 'recovery mode'. This
displays the OS-installation menu, allowing the user to choose which OS(es) to install. Refer to
the normal documentation for more details a about this menu.

As you may have guessed, the "Available space" displayed here is the size of the extended
 /dev/mmcblk0p2 partition, which is where all the OSes get installed to.

NOOBS datafiles

In contrast to the standalone images described earlier (which contain raw partitions), NOOBS
instead uses (compressed) tarballs of the partition contents, along with a bunch of settings files.
NOOBS is responsible for actually creating the partitions on the SD card itself, which means the
partitions are always created at the "correct" size in the first place, there's no need to resize them
later. And unlike the low-level raw partitions, the tarballs don't store unused disk blocks.

NOOBS OS installation

For the first example, let's assume that the user is installing just Raspbian. The partitions.json
(which can be viewed online here) then specifies which partitions should be created, how big they
should be, and which filesystems they should use. In this example it would create a 60MB FAT
partition (/dev/mmcblk0p5), format it, and extract the contents of boot.tar.xz to it. As the root
partition has want_maximised: true it would then create an ext4 partition (/dev/mmcblk0p6)
filling up the entirety of the rest of the extended partition, format it, and extract the contents of
 root.tar.xz to it. This gives us the full partition layout shown in the table earlier. It then runs the
 partition_setup.sh script which mounts these new partitions, and edits files (typically just
 cmdline.txt on the boot partition and /etc/fstab on the root partition) to tell Raspbian which
partitions it got installed to. This allows Raspbian to adjust itself to being stored on
 /dev/mmcblk0p5 and /dev/mmcblk0p6 instead of /dev/mmcblk0p1 and /dev/mmcblk0p2 . And
finally it updates the settings partition with details of the OS we just installed.

https://github.com/raspberrypi/noobs#troubleshooting
https://github.com/raspberrypi/noobs/blob/master/README.md
https://en.wikipedia.org/wiki/Tar_(computing)
http://downloads.raspberrypi.org/raspbian/partitions.json

Primary
partition

Logical
partition

Type Label Contents

1 FAT RECOVERY
NOOBS boot files & initramfs,
OS recovery images

2 extended Any logical partitions

5 FAT boot Raspbian boot files

6 ext4 root Raspbian root filesystem

3 ext4 SETTINGS NOOBS settings

If instead we were installing Raspbian and ArchLinux then we might end up with ArchLinux's boot
partition as /dev/mmcblk0p5 , ArchLinux's root partition as /dev/mmcblk0p6 , Raspbian's boot
partition as /dev/mmcblk0p7 and Raspbian's root partition as /dev/mmcblk0p8 . As both
Raspbian's and ArchLinux's partitions.json file specify one of their partitions as
 want_maximised: true then we'd end up with two small boot partitions and two large-as-
possible root partitions. NOOBS never 'wastes' any space on an SD card.

Primary
partition

Logical
partition

Type Label Contents

1 FAT RECOVERY
NOOBS boot files & initramfs,
OS recovery images

2 extended Any logical partitions

5 FAT boot ArchLinux boot files

6 ext4 root ArchLinux root filesystem

7 FAT boot1 Raspbian boot files

8 ext4 root1 Raspbian root filesystem

3 ext4 SETTINGS NOOBS settings

NOOBS bootup ('boot mode')

If the user isn't pressing the Shift key, and (using the information stored on the settings partition)
NOOBS detects that only one bootable Operating System has been installed, it automatically
boots that Operating System. It does this by reading the settings partition to determine the boot
partition for that OS, and then instructs the firmware to "soft-reboot" using the OS's boot
partition. This then 'reboots' the firmware and loads start.elf from the specified partition (typically
/dev/mmcblk0p5 if only one OS is installed) and then proceeds the same as the standalone boot
described at the very top of this page - start.elf loads kernel.img and reads cmdline.txt, and then
kernel.img uses the command-line that was passed to it to determine which partition the root
filesystem is stored on (typically /dev/mmcblk0p6 if only one OS is installed), and loads the rest of
the system from there.

If instead multiple Operating Systems have been installed, NOOBS then displays the OS-boot
menu, allowing the user to choose which OS(es) to boot.

Once the user has selected an option (or if the menu times out and defaults to the last-booted
option) then the boot proceeds as described immediately above, with NOOBS using the
information on the settings partition to determine which partition to "soft-reboot" as the boot
partition.

If using the autoboot.txt feature described here then bootcode.bin immediately "soft-reboots" to
the specified partition at power-on, and skips loading NOOBS entirely.

Booting RISC OS within NOOBS
The one small caveat to the above is that RISC OS doesn't understand partition tables, and so it
has to be installed to a specific partition at a specific offset. This is what the riscos-boot.bin file is
for, and why the RISC OS 'root' partition is still stored as a raw partition and not as a tarball.
However NOOBS handles all these details for you automatically, and it's still possible to install
other OSes alongside RISC OS.

Status API Training Shop Blog About Pricing© 2015 GitHub, Inc. Terms Privacy Security Contact Help

https://github.com/raspberrypi/noobs#how-to-bypass-the-recovery-splashscreen-and-boot-directly-into-a-fixed-partition
https://status.github.com/
https://developer.github.com/
https://training.github.com/
https://shop.github.com/
https://github.com/blog
https://github.com/about
https://github.com/pricing
https://github.com/site/terms
https://github.com/site/privacy
https://github.com/security
https://github.com/contact
https://help.github.com/

