
ev.pod

Page 1

NAME
libev - a high performance full-featured event loop written in C

SYNOPSIS
 #include <ev.h>

EXAMPLE PROGRAM
 // a single header file is required
 #include <ev.h>

 #include <stdio.h> // for puts

 // every watcher type has its own typedef'd struct
 // with the name ev_TYPE
 ev_io stdin_watcher;
 ev_timer timeout_watcher;

 // all watcher callbacks have a similar signature
 // this callback is called when data is readable on stdin
 static void
 stdin_cb (EV_P_ ev_io *w, int revents)
 {
 puts ("stdin ready");
 // for one-shot events, one must manually stop the watcher
 // with its corresponding stop function.
 ev_io_stop (EV_A_ w);

 // this causes all nested ev_run's to stop iterating
 ev_break (EV_A_ EVBREAK_ALL);
 }

 // another callback, this time for a time-out
 static void
 timeout_cb (EV_P_ ev_timer *w, int revents)
 {
 puts ("timeout");
 // this causes the innermost ev_run to stop iterating
 ev_break (EV_A_ EVBREAK_ONE);
 }

 int
 main (void)
 {
 // use the default event loop unless you have special needs
 struct ev_loop *loop = EV_DEFAULT;

 // initialise an io watcher, then start it
 // this one will watch for stdin to become readable
 ev_io_init (&stdin_watcher, stdin_cb, /*STDIN_FILENO*/ 0, EV_READ);
 ev_io_start (loop, &stdin_watcher);

 // initialise a timer watcher, then start it
 // simple non-repeating 5.5 second timeout

ev.pod

Page 2

 ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);
 ev_timer_start (loop, &timeout_watcher);

 // now wait for events to arrive
 ev_run (loop, 0);

 // break was called, so exit
 return 0;
 }

ABOUT THIS DOCUMENT
This document documents the libev software package.

The newest version of this document is also available as an html-formatted
 web page you might find
easier to navigate when reading it for the first
 time: http://pod.tst.eu/http://cvs.schmorp.de/libev/ev.pod
.

While this document tries to be as complete as possible in documenting
 libev, its usage and the
rationale behind its design, it is not a tutorial
 on event-based programming, nor will it introduce
event-based programming
 with libev.

Familiarity with event based programming techniques in general is assumed
 throughout this
document.

WHAT TO READ WHEN IN A HURRY
This manual tries to be very detailed, but unfortunately, this also makes
 it very long. If you just want to
know the basics of libev, I suggest
 reading ANATOMY OF A WATCHER, then the EXAMPLE
PROGRAM above and
 look up the missing functions in GLOBAL FUNCTIONS and the ev_io and
ev_timer sections in WATCHER TYPES.

ABOUT LIBEV
Libev is an event loop: you register interest in certain events (such as a
 file descriptor being readable
or a timeout occurring), and it will manage
 these event sources and provide your program with events.

To do this, it must take more or less complete control over your process
 (or thread) by executing the
event loop handler, and will then
 communicate events via a callback mechanism.

You register interest in certain events by registering so-called event
 watchers, which are relatively
small C structures you initialise with the
 details of the event, and then hand it over to libev by starting
the
 watcher.

FEATURES
Libev supports select, poll, the Linux-specific epoll, the
 BSD-specific kqueue and the
Solaris-specific event port mechanisms
 for file descriptor events (ev_io), the Linux inotify
interface
 (for ev_stat), Linux eventfd/signalfd (for faster and cleaner
 inter-thread wakeup (
ev_async)/signal handling (ev_signal)) relative
 timers (ev_timer), absolute timers with
customised rescheduling
 (ev_periodic), synchronous signals (ev_signal), process status
 change
events (ev_child), and event watchers dealing with the event
 loop mechanism itself (ev_idle,
ev_embed, ev_prepare and ev_check watchers) as well as file watchers (ev_stat) and even

limited support for fork events (ev_fork).

It also is quite fast (see this benchmark comparing it to libevent
 for example).

CONVENTIONS
Libev is very configurable. In this manual the default (and most common)
 configuration will be
described, which supports multiple event loops. For
 more info about various configuration options
please have a look at EMBED section in this manual. If libev was configured without support
 for
multiple event loops, then all functions taking an initial argument of
 name loop (which is always of

ev.pod

Page 3

type struct ev_loop *) will not have
 this argument.

TIME REPRESENTATION
Libev represents time as a single floating point number, representing
 the (fractional) number of
seconds since the (POSIX) epoch (in practice
 somewhere near the beginning of 1970, details are
complicated, don't
 ask). This type is called ev_tstamp, which is what you should use
 too. It usually
aliases to the double type in C. When you need to do
 any calculations on it, you should treat it as
some floating point value.

Unlike the name component stamp might indicate, it is also used for
 time differences (e.g. delays)
throughout libev.

ERROR HANDLING
Libev knows three classes of errors: operating system errors, usage errors
 and internal errors (bugs).

When libev catches an operating system error it cannot handle (for example
 a system call indicating a
condition libev cannot fix), it calls the callback
 set via ev_set_syserr_cb, which is supposed to fix
the problem or
 abort. The default is to print a diagnostic message and to call abort
 ().

When libev detects a usage error such as a negative timer interval, then
 it will print a diagnostic
message and abort (via the assert mechanism,
 so NDEBUG will disable this checking): these are
programming errors in
 the libev caller and need to be fixed there.

Libev also has a few internal error-checking assertions, and also has
 extensive consistency
checking code. These do not trigger under normal
 circumstances, as they indicate either a bug in
libev or worse.

GLOBAL FUNCTIONS
These functions can be called anytime, even before initialising the
 library in any way.

ev_tstamp ev_time ()

Returns the current time as libev would use it. Please note that the ev_now function is usually
faster and also often returns the timestamp
 you actually want to know. Also interesting is the
combination of ev_now_update and ev_now.

ev_sleep (ev_tstamp interval)

Sleep for the given interval: The current thread will be blocked
 until either it is interrupted or
the given time interval has
 passed (approximately - it might return a bit earlier even if not

interrupted). Returns immediately if interval <= 0.

Basically this is a sub-second-resolution sleep ().

The range of the interval is limited - libev only guarantees to work
 with sleep times of up to
one day (interval <= 86400).

int ev_version_major ()

int ev_version_minor ()

You can find out the major and minor ABI version numbers of the library
 you linked against by
calling the functions ev_version_major and ev_version_minor. If you want, you can
compare against the global
 symbols EV_VERSION_MAJOR and EV_VERSION_MINOR, which
specify the
 version of the library your program was compiled against.

These version numbers refer to the ABI version of the library, not the
 release version.

Usually, it's a good idea to terminate if the major versions mismatch,
 as this indicates an
incompatible change. Minor versions are usually
 compatible to older versions, so a larger
minor version alone is usually
 not a problem.

Example: Make sure we haven't accidentally been linked against the wrong
 version (note,
however, that this will not detect other ABI mismatches,
 such as LFS or reentrancy).

 assert (("libev version mismatch",

ev.pod

Page 4

 ev_version_major () == EV_VERSION_MAJOR
 && ev_version_minor () >= EV_VERSION_MINOR));

unsigned int ev_supported_backends ()

Return the set of all backends (i.e. their corresponding EV_BACKEND_*
 value) compiled into
this binary of libev (independent of their
 availability on the system you are running on). See
ev_default_loop for
 a description of the set values.

Example: make sure we have the epoll method, because yeah this is cool and
 a must have
and can we have a torrent of it please!!!11

 assert (("sorry, no epoll, no sex",
 ev_supported_backends () & EVBACKEND_EPOLL));

unsigned int ev_recommended_backends ()

Return the set of all backends compiled into this binary of libev and
 also recommended for this
platform, meaning it will work for most file
 descriptor types. This set is often smaller than the
one returned by ev_supported_backends, as for example kqueue is broken on most BSDs
and will not be auto-detected unless you explicitly request it (assuming
 you know what you are
doing). This is the set of backends that libev will
 probe for if you specify no backends explicitly.

unsigned int ev_embeddable_backends ()

Returns the set of backends that are embeddable in other event loops. This
 value is
platform-specific but can include backends not available on the
 current system. To find which
embeddable backends might be supported on
 the current system, you would need to look at
ev_embeddable_backends ()
 & ev_supported_backends (), likewise for
recommended ones.

See the description of ev_embed watchers for more info.

ev_set_allocator (void *(*cb)(void *ptr, long size) throw ())

Sets the allocation function to use (the prototype is similar - the
 semantics are identical to the
realloc C89/SuS/POSIX function). It is
 used to allocate and free memory (no surprises
here). If it returns zero
 when memory needs to be allocated (size != 0), the library might
abort
 or take some potentially destructive action.

Since some systems (at least OpenBSD and Darwin) fail to implement
 correct realloc
semantics, libev will use a wrapper around the system realloc and free functions by
default.

You could override this function in high-availability programs to, say,
 free some memory if it
cannot allocate memory, to use a special allocator,
 or even to sleep a while and retry until
some memory is available.

Example: Replace the libev allocator with one that waits a bit and then
 retries (example
requires a standards-compliant realloc).

 static void *
 persistent_realloc (void *ptr, size_t size)
 {
 for (;;)
 {
 void *newptr = realloc (ptr, size);

 if (newptr)
 return newptr;

 sleep (60);
 }
 }

ev.pod

Page 5

 ...
 ev_set_allocator (persistent_realloc);

ev_set_syserr_cb (void (*cb)(const char *msg) throw ())

Set the callback function to call on a retryable system call error (such
 as failed select, poll,
epoll_wait). The message is a printable string
 indicating the system call or subsystem causing
the problem. If this
 callback is set, then libev will expect it to remedy the situation, no
 matter
what, when it returns. That is, libev will generally retry the
 requested operation, or, if the
condition doesn't go away, do bad stuff
 (such as abort).

Example: This is basically the same thing that libev does internally, too.

 static void
 fatal_error (const char *msg)
 {
 perror (msg);
 abort ();
 }

 ...
 ev_set_syserr_cb (fatal_error);

ev_feed_signal (int signum)

This function can be used to "simulate" a signal receive. It is completely
 safe to call this
function at any time, from any context, including signal
 handlers or random threads.

Its main use is to customise signal handling in your process, especially
 in the presence of
threads. For example, you could block signals
 by default in all threads (and specifying
EVFLAG_NOSIGMASK when
 creating any loops), and in one thread, use sigwait or any other
mechanism to wait for signals, then "deliver" them to libev by calling ev_feed_signal.

FUNCTIONS CONTROLLING EVENT LOOPS
An event loop is described by a struct ev_loop * (the struct is not optional in this case unless
libev 3 compatibility is disabled, as
 libev 3 had an ev_loop function colliding with the struct name).

The library knows two types of such loops, the default loop, which
 supports child process events, and
dynamically created event loops which
 do not.

struct ev_loop *ev_default_loop (unsigned int flags)

This returns the "default" event loop object, which is what you should
 normally use when you
just need "the event loop". Event loop objects and
 the flags parameter are described in more
detail in the entry for ev_loop_new.

If the default loop is already initialised then this function simply
 returns it (and ignores the
flags. If that is troubling you, check ev_backend () afterwards). Otherwise it will create it
with the given
 flags, which should almost always be 0, unless the caller is also the
 one calling
ev_run or otherwise qualifies as "the main program".

If you don't know what event loop to use, use the one returned from this
 function (or via the
EV_DEFAULT macro).

Note that this function is not thread-safe, so if you want to use it
 from multiple threads, you
have to employ some kind of mutex (note also
 that this case is unlikely, as loops cannot be
shared easily between
 threads anyway).

The default loop is the only loop that can handle ev_child watchers,
 and to do this, it always
registers a handler for SIGCHLD. If this is
 a problem for your application you can either create
a dynamic loop with ev_loop_new which doesn't do that, or you can simply overwrite the
SIGCHLD signal handler after calling ev_default_init.

Example: This is the most typical usage.

ev.pod

Page 6

 if (!ev_default_loop (0))
 fatal ("could not initialise libev, bad $LIBEV_FLAGS in
environment?");

Example: Restrict libev to the select and poll backends, and do not allow
 environment settings
to be taken into account:

 ev_default_loop (EVBACKEND_POLL | EVBACKEND_SELECT |
EVFLAG_NOENV);

struct ev_loop *ev_loop_new (unsigned int flags)

This will create and initialise a new event loop object. If the loop
 could not be initialised,
returns false.

This function is thread-safe, and one common way to use libev with
 threads is indeed to
create one loop per thread, and using the default
 loop in the "main" or "initial" thread.

The flags argument can be used to specify special behaviour or specific
 backends to use, and
is usually specified as 0 (or EVFLAG_AUTO).

The following flags are supported:

EVFLAG_AUTO

The default flags value. Use this if you have no clue (it's the right
 thing, believe me).

EVFLAG_NOENV

If this flag bit is or'ed into the flag value (or the program runs setuid
 or setgid) then
libev will not look at the environment variable LIBEV_FLAGS. Otherwise (the default),
this environment variable will
 override the flags completely if it is found in the
environment. This is
 useful to try out specific backends to test their performance, to
work
 around bugs, or to make libev threadsafe (accessing environment variables

cannot be done in a threadsafe way, but usually it works if no other
 thread modifies
them).

EVFLAG_FORKCHECK

Instead of calling ev_loop_fork manually after a fork, you can also
 make libev check
for a fork in each iteration by enabling this flag.

This works by calling getpid () on every iteration of the loop,
 and thus this might
slow down your event loop if you do a lot of loop
 iterations and little real work, but is
usually not noticeable (on my
 GNU/Linux system for example, getpid is actually a
simple 5-insn sequence
 without a system call and thus very fast, but my GNU/Linux
system also has pthread_atfork which is even faster).

The big advantage of this flag is that you can forget about fork (and
 forget about
forgetting to tell libev about forking, although you still
 have to ignore SIGPIPE) when
you use this flag.

This flag setting cannot be overridden or specified in the LIBEV_FLAGS
 environment
variable.

EVFLAG_NOINOTIFY

When this flag is specified, then libev will not attempt to use the inotify API for its
ev_stat watchers. Apart from debugging and
 testing, this flag can be useful to
conserve inotify file descriptors, as
 otherwise each loop using ev_stat watchers
consumes one inotify handle.

EVFLAG_SIGNALFD

When this flag is specified, then libev will attempt to use the signalfd API for its
ev_signal (and ev_child) watchers. This API
 delivers signals synchronously,
which makes it both faster and might make
 it possible to get the queued signal data. It

ev.pod

Page 7

can also simplify signal
 handling with threads, as long as you properly block signals in
your
 threads that are not interested in handling them.

Signalfd will not be used by default as this changes your signal mask, and
 there are a
lot of shoddy libraries and programs (glib's threadpool for
 example) that can't properly
initialise their signal masks.

EVFLAG_NOSIGMASK

When this flag is specified, then libev will avoid to modify the signal
 mask. Specifically,
this means you have to make sure signals are unblocked
 when you want to receive
them.

This behaviour is useful when you want to do your own signal handling, or
 want to
handle signals only in specific threads and want to avoid libev
 unblocking the signals.

It's also required by POSIX in a threaded program, as libev calls sigprocmask,
whose behaviour is officially unspecified.

This flag's behaviour will become the default in future versions of libev.

EVBACKEND_SELECT (value 1, portable select backend)

This is your standard select(2) backend. Not completely standard, as
 libev tries to roll
its own fd_set with no limits on the number of fds,
 but if that fails, expect a fairly low
limit on the number of fds when
 using this backend. It doesn't scale too well
(O(highest_fd)), but its
 usually the fastest backend for a low number of (low-numbered
:) fds.

To get good performance out of this backend you need a high amount of
 parallelism
(most of the file descriptors should be busy). If you are
 writing a server, you should
accept () in a loop to accept as many
 connections as possible during one iteration.
You might also want to have
 a look at ev_set_io_collect_interval () to
increase the amount of
 readiness notifications you get per iteration.

This backend maps EV_READ to the readfds set and EV_WRITE to the writefds
set (and to work around Microsoft Windows bugs, also onto the exceptfds set on
that platform).

EVBACKEND_POLL (value 2, poll backend, available everywhere except on windows)

And this is your standard poll(2) backend. It's more complicated
 than select, but
handles sparse fds better and has no artificial
 limit on the number of fds you can use
(except it will slow down
 considerably with a lot of inactive fds). It scales similarly to
select,
 i.e. O(total_fds). See the entry for EVBACKEND_SELECT, above, for

performance tips.

This backend maps EV_READ to POLLIN | POLLERR | POLLHUP, and EV_WRITE
to POLLOUT | POLLERR | POLLHUP.

EVBACKEND_EPOLL (value 4, Linux)

Use the linux-specific epoll(7) interface (for both pre- and post-2.6.9
 kernels).

For few fds, this backend is a bit little slower than poll and select, but
 it scales
phenomenally better. While poll and select usually scale like
 O(total_fds) where
total_fds is the total number of fds (or the highest
 fd), epoll scales either O(1) or
O(active_fds).

The epoll mechanism deserves honorable mention as the most misdesigned
 of the
more advanced event mechanisms: mere annoyances include silently
 dropping file
descriptors, requiring a system call per change per file
 descriptor (and unnecessary
guessing of parameters), problems with dup,
 returning before the timeout value,
resulting in additional iterations
 (and only giving 5ms accuracy while select on the
same platform gives
 0.1ms) and so on. The biggest issue is fork races, however - if a
program
 forks then both parent and child process have to recreate the epoll
 set, which
can take considerable time (one syscall per file descriptor)
 and is of course hard to

ev.pod

Page 8

detect.

Epoll is also notoriously buggy - embedding epoll fds should work,
 but of course
doesn't, and epoll just loves to report events for
 totally different file descriptors (even
already closed ones, so
 one cannot even remove them from the set) than registered in
the set
 (especially on SMP systems). Libev tries to counter these spurious
 notifications
by employing an additional generation counter and comparing
 that against the events
to filter out spurious ones, recreating the set
 when required. Epoll also erroneously
rounds down timeouts, but gives you
 no way to know when and by how much, so
sometimes you have to busy-wait
 because epoll returns immediately despite a
nonzero timeout. And last
 not least, it also refuses to work with some file descriptors
which work
 perfectly fine with select (files, many character devices...).

Epoll is truly the train wreck among event poll mechanisms, a frankenpoll,
 cobbled
together in a hurry, no thought to design or interaction with
 others. Oh, the pain, will it
ever stop...

While stopping, setting and starting an I/O watcher in the same iteration
 will result in
some caching, there is still a system call per such
 incident (because the same file
descriptor could point to a different file description now), so its best to avoid that. Also,
dup ()'ed
 file descriptors might not work very well if you register events for both
 file
descriptors.

Best performance from this backend is achieved by not unregistering all
 watchers for a
file descriptor until it has been closed, if possible,
 i.e. keep at least one watcher active
per fd at all times. Stopping and
 starting a watcher (without re-setting it) also usually
doesn't cause
 extra overhead. A fork can both result in spurious notifications as well
 as
in libev having to destroy and recreate the epoll object, which can
 take considerable
time and thus should be avoided.

All this means that, in practice, EVBACKEND_SELECT can be as fast or
 faster than
epoll for maybe up to a hundred file descriptors, depending on
 the usage. So sad.

While nominally embeddable in other event loops, this feature is broken in
 all kernel
versions tested so far.

This backend maps EV_READ and EV_WRITE in the same way as EVBACKEND_POLL.

EVBACKEND_KQUEUE (value 8, most BSD clones)

Kqueue deserves special mention, as at the time of this writing, it
 was broken on all
BSDs except NetBSD (usually it doesn't work reliably
 with anything but sockets and
pipes, except on Darwin, where of course
 it's completely useless). Unlike epoll,
however, whose brokenness
 is by design, these kqueue bugs can (and eventually will)
be fixed
 without API changes to existing programs. For this reason it's not being

"auto-detected" unless you explicitly specify it in the flags (i.e. using
EVBACKEND_KQUEUE) or libev was compiled on a known-to-be-good (-enough)
 system
like NetBSD.

You still can embed kqueue into a normal poll or select backend and use it
 only for
sockets (after having made sure that sockets work with kqueue on
 the target platform).
See ev_embed watchers for more info.

It scales in the same way as the epoll backend, but the interface to the
 kernel is more
efficient (which says nothing about its actual speed, of
 course). While stopping, setting
and starting an I/O watcher does never
 cause an extra system call as with
EVBACKEND_EPOLL, it still adds up to
 two event changes per incident. Support for
fork () is very bad (you
 might have to leak fd's on fork, but it's more sane than epoll)
and it
 drops fds silently in similarly hard-to-detect cases.

This backend usually performs well under most conditions.

While nominally embeddable in other event loops, this doesn't work
 everywhere, so
you might need to test for this. And since it is broken
 almost everywhere, you should
only use it when you have a lot of sockets
 (for which it usually works), by embedding it

ev.pod

Page 9

into another event loop
 (e.g. EVBACKEND_SELECT or EVBACKEND_POLL (but poll is
of course
 also broken on OS X)) and, did I mention it, using it only for sockets.

This backend maps EV_READ into an EVFILT_READ kevent with NOTE_EOF, and
EV_WRITE into an EVFILT_WRITE kevent with NOTE_EOF.

EVBACKEND_DEVPOLL (value 16, Solaris 8)

This is not implemented yet (and might never be, unless you send me an

implementation). According to reports, /dev/poll only supports sockets
 and is not
embeddable, which would limit the usefulness of this backend
 immensely.

EVBACKEND_PORT (value 32, Solaris 10)

This uses the Solaris 10 event port mechanism. As with everything on Solaris,
 it's
really slow, but it still scales very well (O(active_fds)).

While this backend scales well, it requires one system call per active
 file descriptor per
loop iteration. For small and medium numbers of file
 descriptors a "slow"
EVBACKEND_SELECT or EVBACKEND_POLL backend
 might perform better.

On the positive side, this backend actually performed fully to
 specification in all tests
and is fully embeddable, which is a rare feat
 among the OS-specific backends (I vastly
prefer correctness over speed
 hacks).

On the negative side, the interface is bizarre - so bizarre that
 even sun itself gets it
wrong in their code examples: The event polling
 function sometimes returns events to
the caller even though an error
 occurred, but with no indication whether it has done so
or not (yes, it's
 even documented that way) - deadly for edge-triggered interfaces
where you
 absolutely have to know whether an event occurred or not because you
have
 to re-arm the watcher.

Fortunately libev seems to be able to work around these idiocies.

This backend maps EV_READ and EV_WRITE in the same way as EVBACKEND_POLL.

EVBACKEND_ALL

Try all backends (even potentially broken ones that wouldn't be tried
 with
EVFLAG_AUTO). Since this is a mask, you can do stuff such as EVBACKEND_ALL &
~EVBACKEND_KQUEUE.

It is definitely not recommended to use this flag, use whatever
ev_recommended_backends () returns, or simply do not specify a backend
 at all.

EVBACKEND_MASK

Not a backend at all, but a mask to select all backend bits from a flags value, in case
you want to mask out any backends from a flags
 value (e.g. when modifying the
LIBEV_FLAGS environment variable).

If one or more of the backend flags are or'ed into the flags value,
 then only these backends
will be tried (in the reverse order as listed
 here). If none are specified, all backends in
ev_recommended_backends
 () will be tried.

Example: Try to create a event loop that uses epoll and nothing else.

 struct ev_loop *epoller = ev_loop_new (EVBACKEND_EPOLL |
EVFLAG_NOENV);
 if (!epoller)
 fatal ("no epoll found here, maybe it hides under your chair");

Example: Use whatever libev has to offer, but make sure that kqueue is
 used if available.

 struct ev_loop *loop = ev_loop_new (ev_recommended_backends () |
EVBACKEND_KQUEUE);

ev_loop_destroy (loop)

ev.pod

Page 10

Destroys an event loop object (frees all memory and kernel state
 etc.). None of the active
event watchers will be stopped in the normal
 sense, so e.g. ev_is_active might still return
true. It is your
 responsibility to either stop all watchers cleanly yourself before
 calling this
function, or cope with the fact afterwards (which is usually
 the easiest thing, you can just
ignore the watchers and/or free () them
 for example).

Note that certain global state, such as signal state (and installed signal
 handlers), will not be
freed by this function, and related watchers (such
 as signal and child watchers) would need to
be stopped manually.

This function is normally used on loop objects allocated by ev_loop_new, but it can also be
used on the default loop returned by ev_default_loop, in which case it is not thread-safe.

Note that it is not advisable to call this function on the default loop
 except in the rare occasion
where you really need to free its resources.
 If you need dynamically allocated loops it is better
to use ev_loop_new
 and ev_loop_destroy.

ev_loop_fork (loop)

This function sets a flag that causes subsequent ev_run iterations
 to reinitialise the kernel
state for backends that have one. Despite
 the name, you can call it anytime you are allowed to
start or stop
 watchers (except inside an ev_prepare callback), but it makes most
 sense after
forking, in the child process. You must call it (or use EVFLAG_FORKCHECK) in the child before
resuming or calling ev_run.

In addition, if you want to reuse a loop (via this function or EVFLAG_FORKCHECK), you also
have to ignore SIGPIPE.

Again, you have to call it on any loop that you want to re-use after
 a fork, even if you do not
plan to use the loop in the parent. This is
 because some kernel interfaces *cough* kqueue
cough do funny things
 during fork.

On the other hand, you only need to call this function in the child
 process if and only if you
want to use the event loop in the child. If
 you just fork+exec or create a new loop in the child,
you don't have to
 call it at all (in fact, epoll is so badly broken that it makes a
 difference, but
libev will usually detect this case on its own and do a
 costly reset of the backend).

The function itself is quite fast and it's usually not a problem to call
 it just in case after a fork.

Example: Automate calling ev_loop_fork on the default loop when
 using pthreads.

 static void
 post_fork_child (void)
 {
 ev_loop_fork (EV_DEFAULT);
 }

 ...
 pthread_atfork (0, 0, post_fork_child);

int ev_is_default_loop (loop)

Returns true when the given loop is, in fact, the default loop, and false
 otherwise.

unsigned int ev_iteration (loop)

Returns the current iteration count for the event loop, which is identical
 to the number of times
libev did poll for new events. It starts at 0
 and happily wraps around with enough iterations.

This value can sometimes be useful as a generation counter of sorts (it
 "ticks" the number of
loop iterations), as it roughly corresponds with ev_prepare and ev_check calls - and is
incremented between the
 prepare and check phases.

unsigned int ev_depth (loop)

Returns the number of times ev_run was entered minus the number of
 times ev_run was
exited normally, in other words, the recursion depth.

ev.pod

Page 11

Outside ev_run, this number is zero. In a callback, this number is 1, unless ev_run was
invoked recursively (or from another thread),
 in which case it is higher.

Leaving ev_run abnormally (setjmp/longjmp, cancelling the thread,
 throwing an exception
etc.), doesn't count as "exit" - consider this
 as a hint to avoid such ungentleman-like behaviour
unless it's really
 convenient, in which case it is fully supported.

unsigned int ev_backend (loop)

Returns one of the EVBACKEND_* flags indicating the event backend in
 use.

ev_tstamp ev_now (loop)

Returns the current "event loop time", which is the time the event loop
 received events and
started processing them. This timestamp does not
 change as long as callbacks are being
processed, and this is also the base
 time used for relative timers. You can treat it as the
timestamp of the
 event occurring (or more correctly, libev finding out about it).

ev_now_update (loop)

Establishes the current time by querying the kernel, updating the time
 returned by ev_now ()
in the progress. This is a costly operation and
 is usually done automatically within ev_run ()
.

This function is rarely useful, but when some event callback runs for a
 very long time without
entering the event loop, updating libev's idea of
 the current time is a good idea.

See also The special problem of time updates in the ev_timer section.

ev_suspend (loop)

ev_resume (loop)

These two functions suspend and resume an event loop, for use when the
 loop is not used for
a while and timeouts should not be processed.

A typical use case would be an interactive program such as a game: When
 the user presses
^Z to suspend the game and resumes it an hour later it
 would be best to handle timeouts as if
no time had actually passed while
 the program was suspended. This can be achieved by
calling ev_suspend
 in your SIGTSTP handler, sending yourself a SIGSTOP and calling
ev_resume directly afterwards to resume timer processing.

Effectively, all ev_timer watchers will be delayed by the time spend
 between ev_suspend
and ev_resume, and all ev_periodic watchers
 will be rescheduled (that is, they will lose
any events that would have
 occurred while suspended).

After calling ev_suspend you must not call any function on the
 given loop other than
ev_resume, and you must not call ev_resume
 without a previous call to ev_suspend.

Calling ev_suspend/ev_resume has the side effect of updating the
 event loop time (see
ev_now_update).

bool ev_run (loop, int flags)

Finally, this is it, the event handler. This function usually is called
 after you have initialised all
your watchers and you want to start
 handling events. It will ask the operating system for any
new events, call
 the watcher callbacks, and then repeat the whole process indefinitely: This
 is
why event loops are called loops.

If the flags argument is specified as 0, it will keep handling events
 until either no event
watchers are active anymore or ev_break was
 called.

The return value is false if there are no more active watchers (which
 usually means "all jobs
done" or "deadlock"), and true in all other cases
 (which usually means " you should call
ev_run again").

Please note that an explicit ev_break is usually better than
 relying on all watchers to be
stopped when deciding when a program has
 finished (especially in interactive programs), but
having a program
 that automatically loops as long as it has to and no longer by virtue
 of

ev.pod

Page 12

relying on its watchers stopping correctly, that is truly a thing of
 beauty.

This function is mostly exception-safe - you can break out of a ev_run call by calling
longjmp in a callback, throwing a C++
 exception and so on. This does not decrement the
ev_depth value, nor
 will it clear any outstanding EVBREAK_ONE breaks.

A flags value of EVRUN_NOWAIT will look for new events, will handle
 those events and any
already outstanding ones, but will not wait and
 block your process in case there are no events
and will return after one
 iteration of the loop. This is sometimes useful to poll and handle new

events while doing lengthy calculations, to keep the program responsive.

A flags value of EVRUN_ONCE will look for new events (waiting if
 necessary) and will handle
those and any already outstanding ones. It
 will block your process until at least one new event
arrives (which could
 be an event internal to libev itself, so there is no guarantee that a

user-registered callback will be called), and will return after one
 iteration of the loop.

This is useful if you are waiting for some external event in conjunction
 with something not
expressible using other libev watchers (i.e. "roll your
 own ev_run"). However, a pair of
ev_prepare/ev_check watchers is
 usually a better approach for this kind of thing.

Here are the gory details of what ev_run does (this is for your
 understanding, not a
guarantee that things will work exactly like this in
 future versions):

 - Increment loop depth.
 - Reset the ev_break status.
 - Before the first iteration, call any pending watchers.
 LOOP:
 - If EVFLAG_FORKCHECK was used, check for a fork.
 - If a fork was detected (by any means), queue and call all fork
watchers.
 - Queue and call all prepare watchers.
 - If ev_break was called, goto FINISH.
 - If we have been forked, detach and recreate the kernel state
 as to not disturb the other process.
 - Update the kernel state with all outstanding changes.
 - Update the "event loop time" (ev_now ()).
 - Calculate for how long to sleep or block, if at all
 (active idle watchers, EVRUN_NOWAIT or not having
 any active watchers at all will result in not sleeping).
 - Sleep if the I/O and timer collect interval say so.
 - Increment loop iteration counter.
 - Block the process, waiting for any events.
 - Queue all outstanding I/O (fd) events.
 - Update the "event loop time" (ev_now ()), and do time jump
adjustments.
 - Queue all expired timers.
 - Queue all expired periodics.
 - Queue all idle watchers with priority higher than that of
pending events.
 - Queue all check watchers.
 - Call all queued watchers in reverse order (i.e. check watchers
first).
 Signals and child watchers are implemented as I/O watchers, and
will
 be handled here by queueing them when their watcher gets
executed.
 - If ev_break has been called, or EVRUN_ONCE or EVRUN_NOWAIT
 were used, or there are no active watchers, goto FINISH,
otherwise
 continue with step LOOP.
 FINISH:

ev.pod

Page 13

 - Reset the ev_break status iff it was EVBREAK_ONE.
 - Decrement the loop depth.
 - Return.

Example: Queue some jobs and then loop until no events are outstanding
 anymore.

 ... queue jobs here, make sure they register event watchers as
long
 ... as they still have work to do (even an idle watcher will do..)
 ev_run (my_loop, 0);
 ... jobs done or somebody called break. yeah!

ev_break (loop, how)

Can be used to make a call to ev_run return early (but only after it
 has processed all
outstanding events). The how argument must be either EVBREAK_ONE, which will make the
innermost ev_run call return, or EVBREAK_ALL, which will make all nested ev_run calls
return.

This "break state" will be cleared on the next call to ev_run.

It is safe to call ev_break from outside any ev_run calls, too, in
 which case it will have no
effect.

ev_ref (loop)

ev_unref (loop)

Ref/unref can be used to add or remove a reference count on the event
 loop: Every watcher
keeps one reference, and as long as the reference
 count is nonzero, ev_run will not return on
its own.

This is useful when you have a watcher that you never intend to
 unregister, but that
nevertheless should not keep ev_run from
 returning. In such a case, call ev_unref after
starting, and ev_ref
 before stopping it.

As an example, libev itself uses this for its internal signal pipe: It
 is not visible to the libev user
and should not keep ev_run from
 exiting if no event watchers registered by it are active. It is
also an
 excellent way to do this for generic recurring timers or from within
 third-party libraries.
Just remember to unref after start and ref
 before stop (but only if the watcher wasn't active
before, or was active
 before, respectively. Note also that libev might stop watchers itself
 (e.g.
non-repeating timers) in which case you have to ev_ref
 in the callback).

Example: Create a signal watcher, but keep it from keeping ev_run
 running when nothing
else is active.

 ev_signal exitsig;
 ev_signal_init (&exitsig, sig_cb, SIGINT);
 ev_signal_start (loop, &exitsig);
 ev_unref (loop);

Example: For some weird reason, unregister the above signal handler again.

 ev_ref (loop);
 ev_signal_stop (loop, &exitsig);

ev_set_io_collect_interval (loop, ev_tstamp interval)

ev_set_timeout_collect_interval (loop, ev_tstamp interval)

These advanced functions influence the time that libev will spend waiting
 for events. Both time
intervals are by default 0, meaning that libev
 will try to invoke timer/periodic callbacks and I/O
callbacks with minimum
 latency.

Setting these to a higher value (the interval must be >= 0)
 allows libev to delay invocation
of I/O and timer/periodic callbacks
 to increase efficiency of loop iterations (or to increase

ev.pod

Page 14

power-saving
 opportunities).

The idea is that sometimes your program runs just fast enough to handle
 one (or very few)
event(s) per loop iteration. While this makes the
 program responsive, it also wastes a lot of
CPU time to poll for new
 events, especially with backends like select () which have a high

overhead for the actual polling but can deliver many events at once.

By setting a higher io collect interval you allow libev to spend more
 time collecting I/O events,
so you can handle more events per iteration,
 at the cost of increasing latency. Timeouts (both
ev_periodic and ev_timer) will not be affected. Setting this to a non-null value will

introduce an additional ev_sleep () call into most loop iterations. The
 sleep time ensures
that libev will not poll for I/O events more often then
 once per this interval, on average (as long
as the host time resolution is
 good enough).

Likewise, by setting a higher timeout collect interval you allow libev
 to spend more time
collecting timeouts, at the expense of increased
 latency/jitter/inexactness (the watcher
callback will be called
 later). ev_io watchers will not be affected. Setting this to a non-null

value will not introduce any overhead in libev.

Many (busy) programs can usually benefit by setting the I/O collect
 interval to a value near
0.1 or so, which is often enough for
 interactive servers (of course not for games), likewise for
timeouts. It
 usually doesn't make much sense to set it to a lower value than 0.01,
 as this
approaches the timing granularity of most systems. Note that if
 you do transactions with the
outside world and you can't increase the
 parallelity, then this setting will limit your transaction
rate (if you
 need to poll once per transaction and the I/O collect interval is 0.01,
 then you can't
do more than 100 transactions per second).

Setting the timeout collect interval can improve the opportunity for
 saving power, as the
program will "bundle" timer callback invocations that
 are "near" in time together, by delaying
some, thus reducing the number of
 times the process sleeps and wakes up again. Another
useful technique to
 reduce iterations/wake-ups is to use ev_periodic watchers and make
sure
 they fire on, say, one-second boundaries only.

Example: we only need 0.1s timeout granularity, and we wish not to poll
 more often than 100
times per second:

 ev_set_timeout_collect_interval (EV_DEFAULT_UC_ 0.1);
 ev_set_io_collect_interval (EV_DEFAULT_UC_ 0.01);

ev_invoke_pending (loop)

This call will simply invoke all pending watchers while resetting their
 pending state. Normally,
ev_run does this automatically when required,
 but when overriding the invoke callback this
call comes handy. This
 function can be invoked from a watcher - this can be useful for
example
 when you want to do some lengthy calculation and want to pass further
 event
handling to another thread (you still have to make sure only one
 thread executes within
ev_invoke_pending or ev_run of course).

int ev_pending_count (loop)

Returns the number of pending watchers - zero indicates that no watchers
 are pending.

ev_set_invoke_pending_cb (loop, void (*invoke_pending_cb)(EV_P))

This overrides the invoke pending functionality of the loop: Instead of
 invoking all pending
watchers when there are any, ev_run will call
 this callback instead. This is useful, for
example, when you want to
 invoke the actual watchers inside another context (another thread
etc.).

If you want to reset the callback, use ev_invoke_pending as new
 callback.

ev_set_loop_release_cb (loop, void (*release)(EV_P) throw (), void (*acquire)(EV_P) throw ())

Sometimes you want to share the same loop between multiple threads. This
 can be done
relatively simply by putting mutex_lock/unlock calls around
 each call to a libev function.

ev.pod

Page 15

However, ev_run can run an indefinite time, so it is not feasible
 to wait for it to return. One
way around this is to wake up the event
 loop via ev_break and ev_async_send, another
way is to set these release and acquire callbacks on the loop.

When set, then release will be called just before the thread is
 suspended waiting for new
events, and acquire is called just
 afterwards.

Ideally, release will just call your mutex_unlock function, and acquire will just call the
mutex_lock function again.

While event loop modifications are allowed between invocations of release and acquire
(that's their only purpose after all), no
 modifications done will affect the event loop, i.e. adding
watchers will
 have no effect on the set of file descriptors being watched, or the time
 waited.
Use an ev_async watcher to wake up ev_run when you want it
 to take note of any changes
you made.

In theory, threads executing ev_run will be async-cancel safe between
 invocations of
release and acquire.

See also the locking example in the THREADS section later in this
 document.

ev_set_userdata (loop, void *data)

void *ev_userdata (loop)

Set and retrieve a single void * associated with a loop. When ev_set_userdata has
never been called, then ev_userdata returns 0.

These two functions can be used to associate arbitrary data with a loop,
 and are intended
solely for the invoke_pending_cb, release and acquire callbacks described above, but
of course can be (ab-)used for
 any other purpose as well.

ev_verify (loop)

This function only does something when EV_VERIFY support has been
 compiled in, which is
the default for non-minimal builds. It tries to go
 through all internal structures and checks them
for validity. If anything
 is found to be inconsistent, it will print an error message to standard

error and call abort ().

This can be used to catch bugs inside libev itself: under normal
 circumstances, this function
will never abort as of course libev keeps its
 data structures consistent.

ANATOMY OF A WATCHER
In the following description, uppercase TYPE in names stands for the
 watcher type, e.g.
ev_TYPE_start can mean ev_timer_start for timer
 watchers and ev_io_start for I/O
watchers.

A watcher is an opaque structure that you allocate and register to record
 your interest in some event.
To make a concrete example, imagine you want
 to wait for STDIN to become readable, you would
create an ev_io watcher
 for that:

 static void my_cb (struct ev_loop *loop, ev_io *w, int revents)
 {
 ev_io_stop (w);
 ev_break (loop, EVBREAK_ALL);
 }

 struct ev_loop *loop = ev_default_loop (0);

 ev_io stdin_watcher;

 ev_init (&stdin_watcher, my_cb);
 ev_io_set (&stdin_watcher, STDIN_FILENO, EV_READ);
 ev_io_start (loop, &stdin_watcher);

ev.pod

Page 16

 ev_run (loop, 0);

As you can see, you are responsible for allocating the memory for your
 watcher structures (and it is
usually a bad idea to do this on the
 stack).

Each watcher has an associated watcher structure (called struct ev_TYPE
 or simply ev_TYPE, as
typedefs are provided for all watcher structs).

Each watcher structure must be initialised by a call to ev_init (watcher
 *, callback), which
expects a callback to be provided. This callback is
 invoked each time the event occurs (or, in the case
of I/O watchers, each
 time the event loop detects that the file descriptor given is readable
 and/or
writable).

Each watcher type further has its own ev_TYPE_set (watcher *, ...)
 macro to configure it,
with arguments specific to the watcher type. There
 is also a macro to combine initialisation and setting
in one call: ev_TYPE_init (watcher *, callback, ...).

To make the watcher actually watch out for events, you have to start it
 with a watcher-specific start
function (ev_TYPE_start (loop, watcher
 *)), and you can stop watching for events at any
time by calling the
 corresponding stop function (ev_TYPE_stop (loop, watcher *).

As long as your watcher is active (has been started but not stopped) you
 must not touch the values
stored in it. Most specifically you must never
 reinitialise it or call its ev_TYPE_set macro.

Each and every callback receives the event loop pointer as first, the
 registered watcher structure as
second, and a bitset of received events as
 third argument.

The received events usually include a single bit per event type received
 (you can receive multiple
events at the same time). The possible bit masks
 are:

EV_READ

EV_WRITE

The file descriptor in the ev_io watcher has become readable and/or
 writable.

EV_TIMER

The ev_timer watcher has timed out.

EV_PERIODIC

The ev_periodic watcher has timed out.

EV_SIGNAL

The signal specified in the ev_signal watcher has been received by a thread.

EV_CHILD

The pid specified in the ev_child watcher has received a status change.

EV_STAT

The path specified in the ev_stat watcher changed its attributes somehow.

EV_IDLE

The ev_idle watcher has determined that you have nothing better to do.

EV_PREPARE

EV_CHECK

All ev_prepare watchers are invoked just before ev_run starts to
 gather new events, and all
ev_check watchers are queued (not invoked)
 just after ev_run has gathered them, but
before it queues any callbacks
 for any received events. That means ev_prepare watchers
are the last
 watchers invoked before the event loop sleeps or polls for new events, and

ev.pod

Page 17

ev_check watchers will be invoked before any other watchers of the same
 or lower priority
within an event loop iteration.

Callbacks of both watcher types can start and stop as many watchers as
 they want, and all of
them will be taken into account (for example, a ev_prepare watcher might start an idle
watcher to keep ev_run from
 blocking).

EV_EMBED

The embedded event loop specified in the ev_embed watcher needs attention.

EV_FORK

The event loop has been resumed in the child process after fork (see ev_fork).

EV_CLEANUP

The event loop is about to be destroyed (see ev_cleanup).

EV_ASYNC

The given async watcher has been asynchronously notified (see ev_async).

EV_CUSTOM

Not ever sent (or otherwise used) by libev itself, but can be freely used
 by libev users to signal
watchers (e.g. via ev_feed_event).

EV_ERROR

An unspecified error has occurred, the watcher has been stopped. This might
 happen
because the watcher could not be properly started because libev
 ran out of memory, a file
descriptor was found to be closed or any other
 problem. Libev considers these application
bugs.

You best act on it by reporting the problem and somehow coping with the
 watcher being
stopped. Note that well-written programs should not receive
 an error ever, so when your
watcher receives it, this usually indicates a
 bug in your program.

Libev will usually signal a few "dummy" events together with an error, for
 example it might
indicate that a fd is readable or writable, and if your
 callbacks is well-written it can just attempt
the operation and cope with
 the error from read() or write(). This will not work in multi-threaded
programs, though, as the fd could already be closed and reused for another
 thing, so beware.

GENERIC WATCHER FUNCTIONS
ev_init (ev_TYPE *watcher, callback)

This macro initialises the generic portion of a watcher. The contents
 of the watcher object can
be arbitrary (so malloc will do). Only
 the generic parts of the watcher are initialised, you need
to call
 the type-specific ev_TYPE_set macro afterwards to initialise the
 type-specific parts.
For each type there is also a ev_TYPE_init macro
 which rolls both calls into one.

You can reinitialise a watcher at any time as long as it has been stopped
 (or never started)
and there are no pending events outstanding.

The callback is always of type void (*)(struct ev_loop *loop, ev_TYPE
*watcher,
 int revents).

Example: Initialise an ev_io watcher in two steps.

 ev_io w;
 ev_init (&w, my_cb);
 ev_io_set (&w, STDIN_FILENO, EV_READ);

ev_TYPE_set (ev_TYPE *watcher, [args])

This macro initialises the type-specific parts of a watcher. You need to
 call ev_init at least
once before you call this macro, but you can
 call ev_TYPE_set any number of times. You
must not, however, call this
 macro on a watcher that is active (it can be pending, however,

ev.pod

Page 18

which is a
 difference to the ev_init macro).

Although some watcher types do not have type-specific arguments
 (e.g. ev_prepare) you
still need to call its set macro.

See ev_init, above, for an example.

ev_TYPE_init (ev_TYPE *watcher, callback, [args])

This convenience macro rolls both ev_init and ev_TYPE_set macro
 calls into a single call.
This is the most convenient method to initialise
 a watcher. The same limitations apply, of
course.

Example: Initialise and set an ev_io watcher in one step.

 ev_io_init (&w, my_cb, STDIN_FILENO, EV_READ);

ev_TYPE_start (loop, ev_TYPE *watcher)

Starts (activates) the given watcher. Only active watchers will receive
 events. If the watcher is
already active nothing will happen.

Example: Start the ev_io watcher that is being abused as example in this
 whole section.

 ev_io_start (EV_DEFAULT_UC, &w);

ev_TYPE_stop (loop, ev_TYPE *watcher)

Stops the given watcher if active, and clears the pending status (whether
 the watcher was
active or not).

It is possible that stopped watchers are pending - for example,
 non-repeating timers are being
stopped when they become pending - but
 calling ev_TYPE_stop ensures that the watcher is
neither active nor
 pending. If you want to free or reuse the memory used by the watcher it is

therefore a good idea to always call its ev_TYPE_stop function.

bool ev_is_active (ev_TYPE *watcher)

Returns a true value iff the watcher is active (i.e. it has been started
 and not yet been
stopped). As long as a watcher is active you must not modify
 it.

bool ev_is_pending (ev_TYPE *watcher)

Returns a true value iff the watcher is pending, (i.e. it has outstanding
 events but its callback
has not yet been invoked). As long as a watcher
 is pending (but not active) you must not call
an init function on it (but ev_TYPE_set is safe), you must not change its priority, and you
must
 make sure the watcher is available to libev (e.g. you cannot free ()
 it).

callback ev_cb (ev_TYPE *watcher)

Returns the callback currently set on the watcher.

ev_set_cb (ev_TYPE *watcher, callback)

Change the callback. You can change the callback at virtually any time
 (modulo threads).

ev_set_priority (ev_TYPE *watcher, int priority)

int ev_priority (ev_TYPE *watcher)

Set and query the priority of the watcher. The priority is a small
 integer between EV_MAXPRI
(default: 2) and EV_MINPRI
 (default: -2). Pending watchers with higher priority will be
invoked
 before watchers with lower priority, but priority will not keep watchers
 from being
executed (except for ev_idle watchers).

If you need to suppress invocation when higher priority events are pending
 you need to look at
ev_idle watchers, which provide this functionality.

You must not change the priority of a watcher as long as it is active or
 pending.

Setting a priority outside the range of EV_MINPRI to EV_MAXPRI is
 fine, as long as you do not

ev.pod

Page 19

mind that the priority value you query might
 or might not have been clamped to the valid
range.

The default priority used by watchers when no priority has been set is
 always 0, which is
supposed to not be too high and not be too low :).

See WATCHER PRIORITY MODELS, below, for a more thorough treatment of
 priorities.

ev_invoke (loop, ev_TYPE *watcher, int revents)

Invoke the watcher with the given loop and revents. Neither loop nor revents need to
be valid as long as the watcher callback
 can deal with that fact, as both are simply passed
through to the
 callback.

int ev_clear_pending (loop, ev_TYPE *watcher)

If the watcher is pending, this function clears its pending status and
 returns its revents bitset
(as if its callback was invoked). If the
 watcher isn't pending it does nothing and returns 0.

Sometimes it can be useful to "poll" a watcher instead of waiting for its
 callback to be invoked,
which can be accomplished with this function.

ev_feed_event (loop, ev_TYPE *watcher, int revents)

Feeds the given event set into the event loop, as if the specified event
 had happened for the
specified watcher (which must be a pointer to an
 initialised but not necessarily started event
watcher). Obviously you must
 not free the watcher as long as it has pending events.

Stopping the watcher, letting libev invoke it, or calling ev_clear_pending will clear the
pending event, even if the watcher was
 not started in the first place.

See also ev_feed_fd_event and ev_feed_signal_event for related
 functions that do
not need a watcher.

See also the ASSOCIATING CUSTOM DATA WITH A WATCHER and BUILDING YOUR OWN
COMPOSITE WATCHERS idioms.

WATCHER STATES
There are various watcher states mentioned throughout this manual -
 active, pending and so on. In
this section these states and the rules to
 transition between them will be described in more detail -
and while these
 rules might look complicated, they usually do "the right thing".

initialised

Before a watcher can be registered with the event loop it has to be
 initialised. This can be
done with a call to ev_TYPE_init, or calls to ev_init followed by the watcher-specific
ev_TYPE_set function.

In this state it is simply some block of memory that is suitable for
 use in an event loop. It can
be moved around, freed, reused etc. at
 will - as long as you either keep the memory contents
intact, or call ev_TYPE_init again.

started/running/active

Once a watcher has been started with a call to ev_TYPE_start it becomes
 property of the
event loop, and is actively waiting for events. While in
 this state it cannot be accessed (except
in a few documented ways), moved,
 freed or anything else - the only legal thing is to keep a
pointer to it,
 and call libev functions on it that are documented to work on active watchers.

pending

If a watcher is active and libev determines that an event it is interested
 in has occurred (such
as a timer expiring), it will become pending. It will
 stay in this pending state until either it is
stopped or its callback is
 about to be invoked, so it is not normally pending inside the watcher

callback.

The watcher might or might not be active while it is pending (for example,
 an expired
non-repeating timer can be pending but no longer active). If it
 is stopped, it can be freely

ev.pod

Page 20

accessed (e.g. by calling ev_TYPE_set),
 but it is still property of the event loop at this time,
so cannot be
 moved, freed or reused. And if it is active the rules described in the
 previous
item still apply.

It is also possible to feed an event on a watcher that is not active (e.g.
 via ev_feed_event),
in which case it becomes pending without being
 active.

stopped

A watcher can be stopped implicitly by libev (in which case it might still
 be pending), or
explicitly by calling its ev_TYPE_stop function. The
 latter will clear any pending state the
watcher might be in, regardless
 of whether it was active or not, so stopping a watcher explicitly
before
 freeing it is often a good idea.

While stopped (and not pending) the watcher is essentially in the
 initialised state, that is, it can
be reused, moved, modified in any way
 you wish (but when you trash the memory block, you
need to ev_TYPE_init
 it again).

WATCHER PRIORITY MODELS
Many event loops support watcher priorities, which are usually small
 integers that influence the
ordering of event callback invocation
 between watchers in some way, all else being equal.

In libev, Watcher priorities can be set using ev_set_priority. See its
 description for the more
technical details such as the actual priority
 range.

There are two common ways how these these priorities are being interpreted
 by event loops:

In the more common lock-out model, higher priorities "lock out" invocation
 of lower priority watchers,
which means as long as higher priority
 watchers receive events, lower priority watchers are not being
invoked.

The less common only-for-ordering model uses priorities solely to order
 callback invocation within a
single event loop iteration: Higher priority
 watchers are invoked before lower priority ones, but they all
get invoked
 before polling for new events.

Libev uses the second (only-for-ordering) model for all its watchers
 except for idle watchers (which
use the lock-out model).

The rationale behind this is that implementing the lock-out model for
 watchers is not well supported by
most kernel interfaces, and most event
 libraries will just poll for the same events again and again as
long as
 their callbacks have not been executed, which is very inefficient in the
 common case of one
high-priority watcher locking out a mass of lower
 priority ones.

Static (ordering) priorities are most useful when you have two or more
 watchers handling the same
resource: a typical usage example is having an ev_io watcher to receive data, and an associated
ev_timer to handle
 timeouts. Under load, data might be received while the program handles
 other
jobs, but since timers normally get invoked first, the timeout
 handler will be executed before checking
for data. In that case, giving
 the timer a lower priority than the I/O watcher ensures that I/O will be

handled first even under adverse conditions (which is usually, but not
 always, what you want).

Since idle watchers use the "lock-out" model, meaning that idle watchers
 will only be executed when
no same or higher priority watchers have
 received events, they can be used to implement the
"lock-out" model when
 required.

For example, to emulate how many other event libraries handle priorities,
 you can associate an
ev_idle watcher to each such watcher, and in
 the normal watcher callback, you just start the idle
watcher. The real
 processing is done in the idle watcher callback. This causes libev to
 continuously
poll and process kernel event data for the watcher, but when
 the lock-out case is known to be rare
(which in turn is rare :), this is
 workable.

Usually, however, the lock-out model implemented that way will perform
 miserably under the type of
load it was designed to handle. In that case,
 it might be preferable to stop the real watcher before
starting the
 idle watcher, so the kernel will not have to process the event in case
 the actual processing

ev.pod

Page 21

will be delayed for considerable time.

Here is an example of an I/O watcher that should run at a strictly lower
 priority than the default, and
which should only process data when no
 other events are pending:

 ev_idle idle; // actual processing watcher
 ev_io io; // actual event watcher

 static void
 io_cb (EV_P_ ev_io *w, int revents)
 {
 // stop the I/O watcher, we received the event, but
 // are not yet ready to handle it.
 ev_io_stop (EV_A_ w);

 // start the idle watcher to handle the actual event.
 // it will not be executed as long as other watchers
 // with the default priority are receiving events.
 ev_idle_start (EV_A_ &idle);
 }

 static void
 idle_cb (EV_P_ ev_idle *w, int revents)
 {
 // actual processing
 read (STDIN_FILENO, ...);

 // have to start the I/O watcher again, as
 // we have handled the event
 ev_io_start (EV_P_ &io);
 }

 // initialisation
 ev_idle_init (&idle, idle_cb);
 ev_io_init (&io, io_cb, STDIN_FILENO, EV_READ);
 ev_io_start (EV_DEFAULT_ &io);

In the "real" world, it might also be beneficial to start a timer, so that
 low-priority connections can not
be locked out forever under load. This
 enables your program to keep a lower latency for important
connections
 during short periods of high load, while not completely locking out less
 important ones.

WATCHER TYPES
This section describes each watcher in detail, but will not repeat
 information given in the last section.
Any initialisation/set macros,
 functions and members specific to the watcher type are explained.

Members are additionally marked with either [read-only], meaning that,
 while the watcher is active,
you can look at the member and expect some
 sensible content, but you must not modify it (you can
modify it while the
 watcher is stopped to your hearts content), or [read-write], which
 means you can
expect it to have some sensible content while the watcher
 is active, but you can also modify it.
Modifying it may not do something
 sensible or take immediate effect (or do anything at all), but libev
will
 not crash or malfunction in any way.

ev_io - is this file descriptor readable or writable?
I/O watchers check whether a file descriptor is readable or writable
 in each iteration of the event loop,
or, more precisely, when reading
 would not block the process and writing would at least be able to
write
 some data. This behaviour is called level-triggering because you keep
 receiving events as long

ev.pod

Page 22

as the condition persists. Remember you can stop
 the watcher if you don't want to act on the event
and neither want to
 receive future events.

In general you can register as many read and/or write event watchers per
 fd as you want (as long as
you don't confuse yourself). Setting all file
 descriptors to non-blocking mode is also usually a good
idea (but not
 required if you know what you are doing).

Another thing you have to watch out for is that it is quite easy to
 receive "spurious" readiness
notifications, that is, your callback might
 be called with EV_READ but a subsequent read(2) will
actually block
 because there is no data. It is very easy to get into this situation even
 with a relatively
standard program structure. Thus it is best to always
 use non-blocking I/O: An extra read(2) returning
EAGAIN is far
 preferable to a program hanging until some data arrives.

If you cannot run the fd in non-blocking mode (for example you should
 not play around with an Xlib
connection), then you have to separately
 re-test whether a file descriptor is really ready with a
known-to-be good
 interface such as poll (fortunately in the case of Xlib, it already does
 this on its own,
so its quite safe to use). Some people additionally
 use SIGALRM and an interval timer, just to be sure
you won't block
 indefinitely.

But really, best use non-blocking mode.

The special problem of disappearing file descriptors

Some backends (e.g. kqueue, epoll) need to be told about closing a file
 descriptor (either due to
calling close explicitly or any other means,
 such as dup2). The reason is that you register interest in
some file
 descriptor, but when it goes away, the operating system will silently drop
 this interest. If
another file descriptor with the same number then is
 registered with libev, there is no efficient way to
see that this is, in
 fact, a different file descriptor.

To avoid having to explicitly tell libev about such cases, libev follows
 the following policy: Each time
ev_io_set is being called, libev
 will assume that this is potentially a new file descriptor, otherwise
 it
is assumed that the file descriptor stays the same. That means that
 you have to call ev_io_set (or
ev_io_init) when you change the
 descriptor even if the file descriptor number itself did not change.

This is how one would do it normally anyway, the important point is that
 the libev application should
not optimise around libev but should leave
 optimisations to libev.

The special problem of dup'ed file descriptors

Some backends (e.g. epoll), cannot register events for file descriptors,
 but only events for the
underlying file descriptions. That means when you
 have dup ()'ed file descriptors or weirder
constellations, and register
 events for them, only one file descriptor might actually receive events.

There is no workaround possible except not registering events
 for potentially dup ()'ed file
descriptors, or to resort to EVBACKEND_SELECT or EVBACKEND_POLL.

The special problem of files

Many people try to use select (or libev) on file descriptors
 representing files, and expect it to
become ready when their program
 doesn't block on disk accesses (which can take a long time on
their own).

However, this cannot ever work in the "expected" way - you get a readiness
 notification as soon as
the kernel knows whether and how much data is
 there, and in the case of open files, that's always the
case, so you
 always get a readiness notification instantly, and your read (or possibly
 write) will still
block on the disk I/O.

Another way to view it is that in the case of sockets, pipes, character
 devices and so on, there is
another party (the sender) that delivers data
 on its own, but in the case of files, there is no such thing:
the disk
 will not send data on its own, simply because it doesn't know what you
 wish to read - you
would first have to request some data.

Since files are typically not-so-well supported by advanced notification
 mechanism, libev tries hard to

ev.pod

Page 23

emulate POSIX behaviour with respect
 to files, even though you should not use it. The reason for this
is
 convenience: sometimes you want to watch STDIN or STDOUT, which is
 usually a tty, often a pipe,
but also sometimes files or special devices
 (for example, epoll on Linux works with /dev/random but
not with /dev/urandom), and even though the file might better be served with
 asynchronous I/O
instead of with non-blocking I/O, it is still useful when
 it "just works" instead of freezing.

So avoid file descriptors pointing to files when you know it (e.g. use
 libeio), but use them when it is
convenient, e.g. for STDIN/STDOUT, or
 when you rarely read from a file instead of from a socket, and
want to
 reuse the same code path.

The special problem of fork

Some backends (epoll, kqueue) do not support fork () at all or exhibit
 useless behaviour. Libev
fully supports fork, but needs to be told about
 it in the child if you want to continue to use it in the
child.

To support fork in your child processes, you have to call ev_loop_fork
 () after a fork in the child,
enable EVFLAG_FORKCHECK, or resort to EVBACKEND_SELECT or EVBACKEND_POLL.

The special problem of SIGPIPE

While not really specific to libev, it is easy to forget about SIGPIPE:
 when writing to a pipe whose
other end has been closed, your program gets
 sent a SIGPIPE, which, by default, aborts your
program. For most programs
 this is sensible behaviour, for daemons, this is usually undesirable.

So when you encounter spurious, unexplained daemon exits, make sure you
 ignore SIGPIPE (and
maybe make sure you log the exit status of your daemon
 somewhere, as that would have given you a
big clue).

The special problem of accept()ing when you can't

Many implementations of the POSIX accept function (for example,
 found in post-2004 Linux) have
the peculiar behaviour of not removing a
 connection from the pending queue in all error cases.

For example, larger servers often run out of file descriptors (because
 of resource limits), causing
accept to fail with ENFILE but not
 rejecting the connection, leading to libev signalling readiness on

the next iteration again (the connection still exists after all), and
 typically causing the program to loop
at 100% CPU usage.

Unfortunately, the set of errors that cause this issue differs between
 operating systems, there is
usually little the app can do to remedy the
 situation, and no known thread-safe method of removing
the connection to
 cope with overload is known (to me).

One of the easiest ways to handle this situation is to just ignore it
 - when the program encounters an
overload, it will just loop until the
 situation is over. While this is a form of busy waiting, no OS offers an
event-based way to handle this situation, so it's the best one can do.

A better way to handle the situation is to log any errors other than EAGAIN and EWOULDBLOCK,
making sure not to flood the log with such
 messages, and continue as usual, which at least gives the
user an idea of
 what could be wrong ("raise the ulimit!"). For extra points one could stop
 the ev_io
watcher on the listening fd "for a while", which reduces CPU
 usage.

If your program is single-threaded, then you could also keep a dummy file
 descriptor for overload
situations (e.g. by opening /dev/null), and
 when you run into ENFILE or EMFILE, close it, run accept
,
 close that fd, and create a new dummy fd. This will gracefully refuse
 clients under typical overload
conditions.

The last way to handle it is to simply log the error and exit, as
 is often done with malloc failures,
but this results in an easy
 opportunity for a DoS attack.

Watcher-Specific Functions

ev_io_init (ev_io *, callback, int fd, int events)

ev_io_set (ev_io *, int fd, int events)

ev.pod

Page 24

Configures an ev_io watcher. The fd is the file descriptor to
 receive events for and events
is either EV_READ, EV_WRITE or EV_READ | EV_WRITE, to express the desire to receive the
given events.

int fd [read-only]

The file descriptor being watched.

int events [read-only]

The events being watched.

Examples

Example: Call stdin_readable_cb when STDIN_FILENO has become, well
 readable, but only
once. Since it is likely line-buffered, you could
 attempt to read a whole line in the callback.

 static void
 stdin_readable_cb (struct ev_loop *loop, ev_io *w, int revents)
 {
 ev_io_stop (loop, w);
 .. read from stdin here (or from w->fd) and handle any I/O errors
 }

 ...
 struct ev_loop *loop = ev_default_init (0);
 ev_io stdin_readable;
 ev_io_init (&stdin_readable, stdin_readable_cb, STDIN_FILENO, EV_READ);
 ev_io_start (loop, &stdin_readable);
 ev_run (loop, 0);

ev_timer - relative and optionally repeating timeouts
Timer watchers are simple relative timers that generate an event after a
 given time, and optionally
repeating in regular intervals after that.

The timers are based on real time, that is, if you register an event that
 times out after an hour and you
reset your system clock to January last
 year, it will still time out after (roughly) one hour. "Roughly"
because
 detecting time jumps is hard, and some inaccuracies are unavoidable (the
 monotonic clock
option helps a lot here).

The callback is guaranteed to be invoked only after its timeout has
 passed (not at, so on systems with
very low-resolution clocks this
 might introduce a small delay, see "the special problem of being too

early", below). If multiple timers become ready during the same loop
 iteration then the ones with
earlier time-out values are invoked before
 ones of the same priority with later time-out values (but this
is no
 longer true when a callback calls ev_run recursively).

Be smart about timeouts

Many real-world problems involve some kind of timeout, usually for error
 recovery. A typical example
is an HTTP request - if the other side hangs,
 you want to raise some error after a while.

What follows are some ways to handle this problem, from obvious and
 inefficient to smart and
efficient.

In the following, a 60 second activity timeout is assumed - a timeout that
 gets reset to 60 seconds
each time there is activity (e.g. each time some
 data or other life sign was received).

1. Use a timer and stop, reinitialise and start it on activity.

This is the most obvious, but not the most simple way: In the beginning,
 start the watcher:

 ev_timer_init (timer, callback, 60., 0.);
 ev_timer_start (loop, timer);

ev.pod

Page 25

Then, each time there is some activity, ev_timer_stop it, initialise it
 and start it again:

 ev_timer_stop (loop, timer);
 ev_timer_set (timer, 60., 0.);
 ev_timer_start (loop, timer);

This is relatively simple to implement, but means that each time there is
 some activity, libev
will first have to remove the timer from its internal
 data structure and then add it again. Libev
tries to be fast, but it's
 still not a constant-time operation.

2. Use a timer and re-start it with ev_timer_again inactivity.

This is the easiest way, and involves using ev_timer_again instead of ev_timer_start.

To implement this, configure an ev_timer with a repeat value
 of 60 and then call
ev_timer_again at start and each time you
 successfully read or write some data. If you go
into an idle state where
 you do not expect data to travel on the socket, you can
ev_timer_stop
 the timer, and ev_timer_again will automatically restart it if need be.

That means you can ignore both the ev_timer_start function and the after argument to
ev_timer_set, and only ever use the repeat
 member and ev_timer_again.

At start:

 ev_init (timer, callback);
 timer->repeat = 60.;
 ev_timer_again (loop, timer);

Each time there is some activity:

 ev_timer_again (loop, timer);

It is even possible to change the time-out on the fly, regardless of
 whether the watcher is
active or not:

 timer->repeat = 30.;
 ev_timer_again (loop, timer);

This is slightly more efficient then stopping/starting the timer each time
 you want to modify its
timeout value, as libev does not have to completely
 remove and re-insert the timer from/into its
internal data structure.

It is, however, even simpler than the "obvious" way to do it.

3. Let the timer time out, but then re-arm it as required.

This method is more tricky, but usually most efficient: Most timeouts are
 relatively long
compared to the intervals between other activity - in
 our example, within 60 seconds, there are
usually many I/O events with
 associated activity resets.

In this case, it would be more efficient to leave the ev_timer alone,
 but remember the time of
last activity, and check for a real timeout only
 within the callback:

 ev_tstamp timeout = 60.;
 ev_tstamp last_activity; // time of last activity
 ev_timer timer;

 static void
 callback (EV_P_ ev_timer *w, int revents)
 {
 // calculate when the timeout would happen
 ev_tstamp after = last_activity - ev_now (EV_A) + timeout;

 // if negative, it means we the timeout already occurred
 if (after < 0.)
 {

ev.pod

Page 26

 // timeout occurred, take action
 }
 else
 {
 // callback was invoked, but there was some recent
 // activity. simply restart the timer to time out
 // after "after" seconds, which is the earliest time
 // the timeout can occur.
 ev_timer_set (w, after, 0.);
 ev_timer_start (EV_A_ w);
 }
 }

To summarise the callback: first calculate in how many seconds the
 timeout will occur (by
calculating the absolute time when it would occur, last_activity + timeout, and
subtracting the current time, ev_now
 (EV_A) from that).

If this value is negative, then we are already past the timeout, i.e. we
 timed out, and need to
do whatever is needed in this case.

Otherwise, we now the earliest time at which the timeout would trigger,
 and simply start the
timer with this timeout value.

In other words, each time the callback is invoked it will check whether
 the timeout occurred. If
not, it will simply reschedule itself to check
 again at the earliest time it could time out. Rinse.
Repeat.

This scheme causes more callback invocations (about one every 60 seconds
 minus half the
average time between activity), but virtually no calls to
 libev to change the timeout.

To start the machinery, simply initialise the watcher and set last_activity to the current
time (meaning there was some activity just
 now), then call the callback, which will "do the right
thing" and start
 the timer:

 last_activity = ev_now (EV_A);
 ev_init (&timer, callback);
 callback (EV_A_ &timer, 0);

When there is some activity, simply store the current time in last_activity, no libev calls
at all:

 if (activity detected)
 last_activity = ev_now (EV_A);

When your timeout value changes, then the timeout can be changed by simply
 providing a
new value, stopping the timer and calling the callback, which
 will again do the right thing (for
example, time out immediately :).

 timeout = new_value;
 ev_timer_stop (EV_A_ &timer);
 callback (EV_A_ &timer, 0);

This technique is slightly more complex, but in most cases where the
 time-out is unlikely to be
triggered, much more efficient.

4. Wee, just use a double-linked list for your timeouts.

If there is not one request, but many thousands (millions...), all
 employing some kind of
timeout with the same timeout value, then one can
 do even better:

When starting the timeout, calculate the timeout value and put the timeout
 at the end of the
list.

Then use an ev_timer to fire when the timeout at the beginning of
 the list is expected to fire
(for example, using the technique #3).

ev.pod

Page 27

When there is some activity, remove the timer from the list, recalculate
 the timeout, append it
to the end of the list again, and make sure to
 update the ev_timer if it was taken from the
beginning of the list.

This way, one can manage an unlimited number of timeouts in O(1) time for
 starting, stopping
and updating the timers, at the expense of a major
 complication, and having to use a constant
timeout. The constant timeout
 ensures that the list stays sorted.

So which method the best?

Method #2 is a simple no-brain-required solution that is adequate in most
 situations. Method #3
requires a bit more thinking, but handles many cases
 better, and isn't very complicated either. In most
case, choosing either
 one is fine, with #3 being better in typical situations.

Method #1 is almost always a bad idea, and buys you nothing. Method #4 is
 rather complicated, but
extremely efficient, something that really pays
 off after the first million or so of active timers, i.e. it's
usually
 overkill :)

The special problem of being too early

If you ask a timer to call your callback after three seconds, then
 you expect it to be invoked after three
seconds - but of course, this
 cannot be guaranteed to infinite precision. Less obviously, it cannot be

guaranteed to any precision by libev - imagine somebody suspending the
 process with a STOP signal
for a few hours for example.

So, libev tries to invoke your callback as soon as possible after the
 delay has occurred, but cannot
guarantee this.

A less obvious failure mode is calling your callback too early: many event
 loops compare timestamps
with a "elapsed delay >= requested delay", but
 this can cause your callback to be invoked much
earlier than you would
 expect.

To see why, imagine a system with a clock that only offers full second
 resolution (think windows if you
can't come up with a broken enough OS
 yourself). If you schedule a one-second timer at the time
500.9, then the
 event loop will schedule your timeout to elapse at a system time of 500
 (500.9
truncated to the resolution) + 1, or 501.

If an event library looks at the timeout 0.1s later, it will see "501 >=
 501" and invoke the callback 0.1s
after it was started, even though a
 one-second delay was requested - this is being "too early", despite
best
 intentions.

This is the reason why libev will never invoke the callback if the elapsed
 delay equals the requested
delay, but only when the elapsed delay is
 larger than the requested delay. In the example above, libev
would only invoke
 the callback at system time 502, or 1.1s after the timer was started.

So, while libev cannot guarantee that your callback will be invoked
 exactly when requested, it can and
does guarantee that the requested
 delay has actually elapsed, or in other words, it always errs on the
"too
 late" side of things.

The special problem of time updates

Establishing the current time is a costly operation (it usually takes
 at least one system call): EV
therefore updates its idea of the current
 time only before and after ev_run collects new events, which
causes a
 growing difference between ev_now () and ev_time () when handling
 lots of events in
one iteration.

The relative timeouts are calculated relative to the ev_now ()
 time. This is usually the right thing as
this timestamp refers to the time
 of the event triggering whatever timeout you are modifying/starting. If
you suspect event processing to be delayed and you need to base the
 timeout on the current time,
use something like the following to adjust
 for it:

 ev_timer_set (&timer, after + (ev_time () - ev_now ()), 0.);

ev.pod

Page 28

If the event loop is suspended for a long time, you can also force an
 update of the time returned by
ev_now () by calling ev_now_update
 (), although that will push the event time of all outstanding
events
 further into the future.

The special problem of unsynchronised clocks

Modern systems have a variety of clocks - libev itself uses the normal
 "wall clock" clock and, if
available, the monotonic clock (to avoid time
 jumps).

Neither of these clocks is synchronised with each other or any other clock
 on the system, so
ev_time () might return a considerably different time
 than gettimeofday () or time (). On a
GNU/Linux system, for example,
 a call to gettimeofday might return a second count that is one
higher
 than a directly following call to time.

The moral of this is to only compare libev-related timestamps with ev_time () and ev_now (), at
least if you want better precision than
 a second or so.

One more problem arises due to this lack of synchronisation: if libev uses
 the system monotonic clock
and you compare timestamps from ev_time
 or ev_now from when you started your timer and when
your callback is
 invoked, you will find that sometimes the callback is a bit "early".

This is because ev_timers work in real time, not wall clock time, so
 libev makes sure your callback
is not invoked before the delay happened, measured according to the real time, not the system clock.

If your timeouts are based on a physical timescale (e.g. "time out this
 connection after 100 seconds")
then this shouldn't bother you as it is
 exactly the right behaviour.

If you want to compare wall clock/system timestamps to your timers, then
 you need to use
ev_periodics, as these are based on the wall clock
 time, where your comparisons will always
generate correct results.

The special problems of suspended animation

When you leave the server world it is quite customary to hit machines that
 can suspend/hibernate -
what happens to the clocks during such a suspend?

Some quick tests made with a Linux 2.6.28 indicate that a suspend freezes
 all processes, while the
clocks (times, CLOCK_MONOTONIC) continue
 to run until the system is suspended, but they will not
advance while the
 system is suspended. That means, on resume, it will be as if the program
 was
frozen for a few seconds, but the suspend time will not be counted
 towards ev_timer when a
monotonic clock source is used. The real time
 clock advanced as expected, but if it is used as sole
clocksource, then a
 long suspend would be detected as a time jump by libev, and timers would
 be
adjusted accordingly.

I would not be surprised to see different behaviour in different between
 operating systems, OS
versions or even different hardware.

The other form of suspend (job control, or sending a SIGSTOP) will see a
 time jump in the monotonic
clocks and the realtime clock. If the program
 is suspended for a very long time, and monotonic clock
sources are in use,
 then you can expect ev_timers to expire as the full suspension time
 will be
counted towards the timers. When no monotonic clock source is in
 use, then libev will again assume a
timejump and adjust accordingly.

It might be beneficial for this latter case to call ev_suspend
 and ev_resume in code that handles
SIGTSTP, to at least get
 deterministic behaviour in this case (you can do nothing against SIGSTOP).

Watcher-Specific Functions and Data Members

ev_timer_init (ev_timer *, callback, ev_tstamp after, ev_tstamp repeat)

ev_timer_set (ev_timer *, ev_tstamp after, ev_tstamp repeat)

Configure the timer to trigger after after seconds. If repeat
 is 0., then it will automatically
be stopped once the timeout is
 reached. If it is positive, then the timer will automatically be

configured to trigger again repeat seconds later, again, and again,
 until stopped manually.

ev.pod

Page 29

The timer itself will do a best-effort at avoiding drift, that is, if
 you configure a timer to trigger
every 10 seconds, then it will normally
 trigger at exactly 10 second intervals. If, however, your
program cannot
 keep up with the timer (because it takes longer than those 10 seconds to
 do
stuff) the timer will not fire more than once per event loop iteration.

ev_timer_again (loop, ev_timer *)

This will act as if the timer timed out, and restarts it again if it is
 repeating. It basically works
like calling ev_timer_stop, updating the
 timeout to the repeat value and calling
ev_timer_start.

The exact semantics are as in the following rules, all of which will be
 applied to the watcher:

If the timer is pending, the pending status is always cleared.

If the timer is started but non-repeating, stop it (as if it timed
 out, without invoking it).

If the timer is repeating, make the repeat value the new timeout
 and start the timer, if
necessary.

This sounds a bit complicated, see Be smart about timeouts, above, for a
 usage example.

ev_tstamp ev_timer_remaining (loop, ev_timer *)

Returns the remaining time until a timer fires. If the timer is active,
 then this time is relative to
the current event loop time, otherwise it's
 the timeout value currently configured.

That is, after an ev_timer_set (w, 5, 7), ev_timer_remaining returns 5. When the
timer is started and one second passes, ev_timer_remaining
 will return 4. When the timer
expires and is restarted, it will return
 roughly 7 (likely slightly less as callback invocation takes
some time,
 too), and so on.

ev_tstamp repeat [read-write]

The current repeat value. Will be used each time the watcher times out
 or
ev_timer_again is called, and determines the next timeout (if any),
 which is also when any
modifications are taken into account.

Examples

Example: Create a timer that fires after 60 seconds.

 static void
 one_minute_cb (struct ev_loop *loop, ev_timer *w, int revents)
 {
 .. one minute over, w is actually stopped right here
 }

 ev_timer mytimer;
 ev_timer_init (&mytimer, one_minute_cb, 60., 0.);
 ev_timer_start (loop, &mytimer);

Example: Create a timeout timer that times out after 10 seconds of
 inactivity.

 static void
 timeout_cb (struct ev_loop *loop, ev_timer *w, int revents)
 {
 .. ten seconds without any activity
 }

 ev_timer mytimer;
 ev_timer_init (&mytimer, timeout_cb, 0., 10.); /* note, only repeat used
 */
 ev_timer_again (&mytimer); /* start timer */

ev.pod

Page 30

 ev_run (loop, 0);

 // and in some piece of code that gets executed on any "activity":
 // reset the timeout to start ticking again at 10 seconds
 ev_timer_again (&mytimer);

ev_periodic - to cron or not to cron?
Periodic watchers are also timers of a kind, but they are very versatile
 (and unfortunately a bit
complex).

Unlike ev_timer, periodic watchers are not based on real time (or
 relative time, the physical time
that passes) but on wall clock time
 (absolute time, the thing you can read on your calendar or clock).
The
 difference is that wall clock time can run faster or slower than real
 time, and time jumps are not
uncommon (e.g. when you adjust your
 wrist-watch).

You can tell a periodic watcher to trigger after some specific point
 in time: for example, if you tell a
periodic watcher to trigger "in 10
 seconds" (by specifying e.g. ev_now () + 10., that is, an
absolute time
 not a delay) and then reset your system clock to January of the previous
 year, then it
will take a year or more to trigger the event (unlike an ev_timer, which would still trigger roughly 10
seconds after starting
 it, as it uses a relative timeout).

ev_periodic watchers can also be used to implement vastly more complex
 timers, such as
triggering an event on each "midnight, local time", or
 other complicated rules. This cannot be done
with ev_timer watchers, as
 those cannot react to time jumps.

As with timers, the callback is guaranteed to be invoked only when the
 point in time where it is
supposed to trigger has passed. If multiple
 timers become ready during the same loop iteration then
the ones with
 earlier time-out values are invoked before ones with later time-out values
 (but this is no
longer true when a callback calls ev_run recursively).

Watcher-Specific Functions and Data Members

ev_periodic_init (ev_periodic *, callback, ev_tstamp offset, ev_tstamp interval, reschedule_cb)

ev_periodic_set (ev_periodic *, ev_tstamp offset, ev_tstamp interval, reschedule_cb)

Lots of arguments, let's sort it out... There are basically three modes of
 operation, and we will
explain them from simplest to most complex:

* absolute timer (offset = absolute time, interval = 0, reschedule_cb = 0)

In this configuration the watcher triggers an event after the wall clock
 time offset has
passed. It will not repeat and will not adjust when a
 time jump occurs, that is, if it is to
be run at January 1st 2011 then it
 will be stopped and invoked when the system clock
reaches or surpasses
 this point in time.

* repeating interval timer (offset = offset within interval, interval > 0, reschedule_cb = 0)

In this mode the watcher will always be scheduled to time out at the next offset + N
 * interval time (for some integer N, which can also be
 negative) and then repeat,
regardless of any time jumps. The offset
 argument is merely an offset into the
interval periods.

This can be used to create timers that do not drift with respect to the
 system clock, for
example, here is an ev_periodic that triggers each
 hour, on the hour (with respect
to UTC):

 ev_periodic_set (&periodic, 0., 3600., 0);

This doesn't mean there will always be 3600 seconds in between triggers,
 but only that
the callback will be called when the system time shows a
 full hour (UTC), or more
correctly, when the system time is evenly divisible
 by 3600.

Another way to think about it (for the mathematically inclined) is that ev_periodic

ev.pod

Page 31

will try to run the callback in this mode at the next possible
 time where time =
offset (mod interval), regardless of any time jumps.

The interval MUST be positive, and for numerical stability, the
 interval value should
be higher than 1/8192 (which is around 100
 microseconds) and offset should be
higher than 0 and should have
 at most a similar magnitude as the current time (say,
within a factor of
 ten). Typical values for offset are, in fact, 0 or something between 0
and interval, which is also the recommended range.

Note also that there is an upper limit to how often a timer can fire (CPU
 speed for
example), so if interval is very small then timing stability
 will of course deteriorate.
Libev itself tries to be exact to be about one
 millisecond (if the OS supports it and the
machine is fast enough).

* manual reschedule mode (offset ignored, interval ignored, reschedule_cb = callback)

In this mode the values for interval and offset are both being
 ignored. Instead,
each time the periodic watcher gets scheduled, the
 reschedule callback will be called
with the watcher as first, and the
 current time as second argument.

NOTE: This callback MUST NOT stop or destroy any periodic watcher, ever,
 or make
ANY other event loop modifications whatsoever, unless explicitly
 allowed by
documentation here.

If you need to stop it, return now + 1e30 (or so, fudge fudge) and stop
 it afterwards
(e.g. by starting an ev_prepare watcher, which is the
 only event loop modification
you are allowed to do).

The callback prototype is ev_tstamp (*reschedule_cb)(ev_periodic
 *w,
ev_tstamp now), e.g.:

 static ev_tstamp
 my_rescheduler (ev_periodic *w, ev_tstamp now)
 {
 return now + 60.;
 }

It must return the next time to trigger, based on the passed time value
 (that is, the
lowest time value larger than to the second argument). It
 will usually be called just
before the callback will be triggered, but
 might be called at other times, too.

NOTE: This callback must always return a time that is higher than or
 equal to the
passed now value.

This can be used to create very complex timers, such as a timer that
 triggers on "next
midnight, local time". To do this, you would calculate the
 next midnight after now and
return the timestamp value for this. How
 you do this is, again, up to you (but it is not
trivial, which is the main
 reason I omitted it as an example).

ev_periodic_again (loop, ev_periodic *)

Simply stops and restarts the periodic watcher again. This is only useful
 when you changed
some parameters or the reschedule callback would return
 a different time than the last time it
was called (e.g. in a crond like
 program when the crontabs have changed).

ev_tstamp ev_periodic_at (ev_periodic *)

When active, returns the absolute time that the watcher is supposed
 to trigger next. This is not
the same as the offset argument to ev_periodic_set, but indeed works even in interval
and manual
 rescheduling modes.

ev_tstamp offset [read-write]

When repeating, this contains the offset value, otherwise this is the
 absolute point in time (the
offset value passed to ev_periodic_set,
 although libev might modify this value for better
numerical stability).

ev.pod

Page 32

Can be modified any time, but changes only take effect when the periodic
 timer fires or
ev_periodic_again is being called.

ev_tstamp interval [read-write]

The current interval value. Can be modified any time, but changes only
 take effect when the
periodic timer fires or ev_periodic_again is being
 called.

ev_tstamp (*reschedule_cb)(ev_periodic *w, ev_tstamp now) [read-write]

The current reschedule callback, or 0, if this functionality is
 switched off. Can be changed any
time, but changes only take effect when
 the periodic timer fires or ev_periodic_again is
being called.

Examples

Example: Call a callback every hour, or, more precisely, whenever the
 system time is divisible by
3600. The callback invocation times have
 potentially a lot of jitter, but good long-term stability.

 static void
 clock_cb (struct ev_loop *loop, ev_periodic *w, int revents)
 {
 ... its now a full hour (UTC, or TAI or whatever your clock follows)
 }

 ev_periodic hourly_tick;
 ev_periodic_init (&hourly_tick, clock_cb, 0., 3600., 0);
 ev_periodic_start (loop, &hourly_tick);

Example: The same as above, but use a reschedule callback to do it:

 #include <math.h>

 static ev_tstamp
 my_scheduler_cb (ev_periodic *w, ev_tstamp now)
 {
 return now + (3600. - fmod (now, 3600.));
 }

 ev_periodic_init (&hourly_tick, clock_cb, 0., 0., my_scheduler_cb);

Example: Call a callback every hour, starting now:

 ev_periodic hourly_tick;
 ev_periodic_init (&hourly_tick, clock_cb,
 fmod (ev_now (loop), 3600.), 3600., 0);
 ev_periodic_start (loop, &hourly_tick);

ev_signal - signal me when a signal gets signalled!
Signal watchers will trigger an event when the process receives a specific
 signal one or more times.
Even though signals are very asynchronous, libev
 will try its best to deliver signals synchronously, i.e.
as part of the
 normal event processing, like any other event.

If you want signals to be delivered truly asynchronously, just use sigaction as you would do without
libev and forget about sharing
 the signal. You can even use ev_async from a signal handler to

synchronously wake up an event loop.

You can configure as many watchers as you like for the same signal, but
 only within the same loop,
i.e. you can watch for SIGINT in your
 default loop and for SIGIO in another loop, but you cannot

ev.pod

Page 33

watch for SIGINT in both the default loop and another loop at the same time. At
 the moment,
SIGCHLD is permanently tied to the default loop.

Only after the first watcher for a signal is started will libev actually
 register something with the kernel.
It thus coexists with your own signal
 handlers as long as you don't register any with libev for the same
signal.

If possible and supported, libev will install its handlers with SA_RESTART (or equivalent) behaviour
enabled, so system calls should
 not be unduly interrupted. If you have a problem with system calls
getting
 interrupted by signals you can block all signals in an ev_check watcher
 and unblock them in
an ev_prepare watcher.

The special problem of inheritance over fork/execve/pthread_create

Both the signal mask (sigprocmask) and the signal disposition
 (sigaction) are unspecified after
starting a signal watcher (and after
 stopping it again), that is, libev might or might not block the signal,

and might or might not set or restore the installed signal handler (but
 see EVFLAG_NOSIGMASK).

While this does not matter for the signal disposition (libev never
 sets signals to SIG_IGN, so handlers
will be reset to SIG_DFL on execve), this matters for the signal mask: many programs do not expect

certain signals to be blocked.

This means that before calling exec (from the child) you should reset
 the signal mask to whatever
"default" you expect (all clear is a good
 choice usually).

The simplest way to ensure that the signal mask is reset in the child is
 to install a fork handler with
pthread_atfork that resets it. That will
 catch fork calls done by libraries (such as the libc) as well.

In current versions of libev, the signal will not be blocked indefinitely
 unless you use the signalfd
API (EV_SIGNALFD). While this reduces
 the window of opportunity for problems, it will not go away,
as libev has to modify the signal mask, at least temporarily.

So I can't stress this enough: If you do not reset your signal mask when
 you expect it to be empty,
you have a race condition in your code. This
 is not a libev-specific thing, this is true for most event
libraries.

The special problem of threads signal handling

POSIX threads has problematic signal handling semantics, specifically,
 a lot of functionality (sigfd,
sigwait etc.) only really works if all
 threads in a process block signals, which is hard to achieve.

When you want to use sigwait (or mix libev signal handling with your own
 for the same signals), you
can tackle this problem by globally blocking
 all signals before creating any threads (or creating them
with a fully set
 sigprocmask) and also specifying the EVFLAG_NOSIGMASK when creating
 loops. Then
designate one thread as "signal receiver thread" which handles
 these signals. You can pass on any
signals that libev might be interested
 in by calling ev_feed_signal.

Watcher-Specific Functions and Data Members

ev_signal_init (ev_signal *, callback, int signum)

ev_signal_set (ev_signal *, int signum)

Configures the watcher to trigger on the given signal number (usually one
 of the SIGxxx
constants).

int signum [read-only]

The signal the watcher watches out for.

Examples

Example: Try to exit cleanly on SIGINT.

 static void
 sigint_cb (struct ev_loop *loop, ev_signal *w, int revents)

ev.pod

Page 34

 {
 ev_break (loop, EVBREAK_ALL);
 }

 ev_signal signal_watcher;
 ev_signal_init (&signal_watcher, sigint_cb, SIGINT);
 ev_signal_start (loop, &signal_watcher);

ev_child - watch out for process status changes
Child watchers trigger when your process receives a SIGCHLD in response to
 some child status
changes (most typically when a child of yours dies or
 exits). It is permissible to install a child watcher
after the child
 has been forked (which implies it might have already exited), as long
 as the event loop
isn't entered (or is continued from a watcher), i.e.,
 forking and then immediately registering a watcher
for the child is fine,
 but forking and registering a watcher a few event loop iterations later or
 in the next
callback invocation is not.

Only the default event loop is capable of handling signals, and therefore
 you can only register child
watchers in the default event loop.

Due to some design glitches inside libev, child watchers will always be
 handled at maximum priority
(their priority is set to EV_MAXPRI by
 libev)

Process Interaction

Libev grabs SIGCHLD as soon as the default event loop is
 initialised. This is necessary to guarantee
proper behaviour even if the
 first child watcher is started after the child exits. The occurrence
 of
SIGCHLD is recorded asynchronously, but child reaping is done
 synchronously as part of the event
loop processing. Libev always reaps all
 children, even ones not watched.

Overriding the Built-In Processing

Libev offers no special support for overriding the built-in child
 processing, but if your application
collides with libev's default child
 handler, you can override it easily by installing your own handler for
SIGCHLD after initialising the default loop, and making sure the
 default loop never gets destroyed.
You are encouraged, however, to use an
 event-based approach to child reaping and thus use libev's
support for
 that, so other libev users can use ev_child watchers freely.

Stopping the Child Watcher

Currently, the child watcher never gets stopped, even when the
 child terminates, so normally one
needs to stop the watcher in the
 callback. Future versions of libev might stop the watcher
automatically
 when a child exit is detected (calling ev_child_stop twice is not a
 problem).

Watcher-Specific Functions and Data Members

ev_child_init (ev_child *, callback, int pid, int trace)

ev_child_set (ev_child *, int pid, int trace)

Configures the watcher to wait for status changes of process pid (or any process if pid is
specified as 0). The callback can look
 at the rstatus member of the ev_child watcher
structure to see
 the status word (use the macros from sys/wait.h and see your systems
waitpid documentation). The rpid member contains the pid of the
 process causing the
status change. trace must be either 0 (only
 activate the watcher when the process
terminates) or 1 (additionally
 activate the watcher when the process is stopped or continued).

int pid [read-only]

The process id this watcher watches out for, or 0, meaning any process id.

int rpid [read-write]

The process id that detected a status change.

ev.pod

Page 35

int rstatus [read-write]

The process exit/trace status caused by rpid (see your systems waitpid and sys/wait.h
documentation for details).

Examples

Example: fork() a new process and install a child handler to wait for
 its completion.

 ev_child cw;

 static void
 child_cb (EV_P_ ev_child *w, int revents)
 {
 ev_child_stop (EV_A_ w);
 printf ("process %d exited with status %x\n", w->rpid, w->rstatus);
 }

 pid_t pid = fork ();

 if (pid < 0)
 // error
 else if (pid == 0)
 {
 // the forked child executes here
 exit (1);
 }
 else
 {
 ev_child_init (&cw, child_cb, pid, 0);
 ev_child_start (EV_DEFAULT_ &cw);
 }

ev_stat - did the file attributes just change?
This watches a file system path for attribute changes. That is, it calls stat on that path in regular
intervals (or when the OS says it changed)
 and sees if it changed compared to the last time, invoking
the callback
 if it did. Starting the watcher stat's the file, so only changes that
 happen after the
watcher has been started will be reported.

The path does not need to exist: changing from "path exists" to "path does
 not exist" is a status
change like any other. The condition "path does not
 exist" (or more correctly "path cannot be stat'ed")
is signified by the st_nlink field being zero (which is otherwise always forced to be at
 least one)
and all the other fields of the stat buffer having unspecified
 contents.

The path must not end in a slash or contain special components such as . or ... The path should be
absolute: If it is relative and
 your working directory changes, then the behaviour is undefined.

Since there is no portable change notification interface available, the
 portable implementation simply
calls stat(2) regularly on the path
 to see if it changed somehow. You can specify a recommended
polling
 interval for this case. If you specify a polling interval of 0 (highly
 recommended!) then a
suitable, unspecified default value will be used
 (which you can expect to be around five seconds,
although this might
 change dynamically). Libev will also impose a minimum interval which is
 currently
around 0.1, but that's usually overkill.

This watcher type is not meant for massive numbers of stat watchers,
 as even with OS-supported
change notifications, this can be
 resource-intensive.

At the time of this writing, the only OS-specific interface implemented
 is the Linux inotify interface
(implementing kqueue support is left as an
 exercise for the reader. Note, however, that the author

ev.pod

Page 36

sees no way of
 implementing ev_stat semantics with kqueue, except as a hint).

ABI Issues (Largefile Support)

Libev by default (unless the user overrides this) uses the default
 compilation environment, which
means that on systems with large file
 support disabled by default, you get the 32 bit version of the stat
structure. When using the library from programs that change the ABI to
 use 64 bit file offsets the
programs will fail. In that case you have to
 compile libev with the same flags to get binary
compatibility. This is
 obviously the case with any flags that change the ABI, but the problem is
 most
noticeably displayed with ev_stat and large file support.

The solution for this is to lobby your distribution maker to make large
 file interfaces available by
default (as e.g. FreeBSD does) and not
 optional. Libev cannot simply switch on large file support
because it has
 to exchange stat structures with application programs compiled using the
 default
compilation environment.

Inotify and Kqueue

When inotify (7) support has been compiled into libev and present at
 runtime, it will be used to
speed up change detection where possible. The
 inotify descriptor will be created lazily when the first
ev_stat
 watcher is being started.

Inotify presence does not change the semantics of ev_stat watchers
 except that changes might be
detected earlier, and in some cases, to avoid
 making regular stat calls. Even in the presence of
inotify support
 there are many cases where libev has to resort to regular stat polling,
 but as long as
kernel 2.6.25 or newer is used (2.6.24 and older have too
 many bugs), the path exists (i.e. stat
succeeds), and the path resides on
 a local filesystem (libev currently assumes only ext2/3, jfs, reiserfs
and
 xfs are fully working) libev usually gets away without polling.

There is no support for kqueue, as apparently it cannot be used to
 implement this functionality, due to
the requirement of having a file
 descriptor open on the object at all times, and detecting renames,
unlinks
 etc. is difficult.

stat () is a synchronous operation

Libev doesn't normally do any kind of I/O itself, and so is not blocking
 the process. The exception are
ev_stat watchers - those call stat
 (), which is a synchronous operation.

For local paths, this usually doesn't matter: unless the system is very
 busy or the intervals between
stat's are large, a stat call will be fast,
 as the path data is usually in memory already (except when
starting the
 watcher).

For networked file systems, calling stat () can block an indefinite
 time due to network issues, and
even under good conditions, a stat call
 often takes multiple milliseconds.

Therefore, it is best to avoid using ev_stat watchers on networked
 paths, although this is fully
supported by libev.

The special problem of stat time resolution

The stat () system call only supports full-second resolution portably,
 and even on systems where
the resolution is higher, most file systems
 still only support whole seconds.

That means that, if the time is the only thing that changes, you can
 easily miss updates: on the first
update, ev_stat detects a change and
 calls your callback, which does something. When there is
another update
 within the same second, ev_stat will be unable to detect unless the
 stat data does
change in other ways (e.g. file size).

The solution to this is to delay acting on a change for slightly more
 than a second (or till slightly after
the next full second boundary), using
 a roughly one-second-delay ev_timer (e.g. ev_timer_set
(w, 0., 1.02);
 ev_timer_again (loop, w)).

The .02 offset is added to work around small timing inconsistencies
 of some operating systems
(where the second counter of the current time
 might be be delayed. One such system is the Linux

ev.pod

Page 37

kernel, where a call to gettimeofday might return a timestamp with a full second later than
 a
subsequent time call - if the equivalent of time () is used to
 update file times then there will be a
small window where the kernel uses
 the previous second to update file times but libev might already
execute
 the timer callback).

Watcher-Specific Functions and Data Members

ev_stat_init (ev_stat *, callback, const char *path, ev_tstamp interval)

ev_stat_set (ev_stat *, const char *path, ev_tstamp interval)

Configures the watcher to wait for status changes of the given path. The interval is a hint
on how quickly a change is expected to
 be detected and should normally be specified as 0 to
let libev choose
 a suitable value. The memory pointed to by path must point to the same
 path
for as long as the watcher is active.

The callback will receive an EV_STAT event when a change was detected,
 relative to the
attributes at the time the watcher was started (or the
 last change was detected).

ev_stat_stat (loop, ev_stat *)

Updates the stat buffer immediately with new values. If you change the
 watched path in your
callback, you could call this function to avoid
 detecting this change (while introducing a race
condition if you are not
 the only one changing the path). Can also be useful simply to find out
the
 new values.

ev_statdata attr [read-only]

The most-recently detected attributes of the file. Although the type is ev_statdata, this is
usually the (or one of the) struct stat types
 suitable for your system, but you can only rely
on the POSIX-standardised
 members to be present. If the st_nlink member is 0, then there
was
 some error while stating the file.

ev_statdata prev [read-only]

The previous attributes of the file. The callback gets invoked whenever prev != attr, or,
more precisely, one or more of these members
 differ: st_dev, st_ino, st_mode, st_nlink
, st_uid, st_gid, st_rdev, st_size, st_atime, st_mtime, st_ctime.

ev_tstamp interval [read-only]

The specified interval.

const char *path [read-only]

The file system path that is being watched.

Examples

Example: Watch /etc/passwd for attribute changes.

 static void
 passwd_cb (struct ev_loop *loop, ev_stat *w, int revents)
 {
 /* /etc/passwd changed in some way */
 if (w->attr.st_nlink)
 {
 printf ("passwd current size %ld\n", (long)w->attr.st_size);
 printf ("passwd current atime %ld\n", (long)w->attr.st_mtime);
 printf ("passwd current mtime %ld\n", (long)w->attr.st_mtime);
 }
 else
 /* you shalt not abuse printf for puts */
 puts ("wow, /etc/passwd is not there, expect problems. "
 "if this is windows, they already arrived\n");
 }

ev.pod

Page 38

 ...
 ev_stat passwd;

 ev_stat_init (&passwd, passwd_cb, "/etc/passwd", 0.);
 ev_stat_start (loop, &passwd);

Example: Like above, but additionally use a one-second delay so we do not
 miss updates (however,
frequent updates will delay processing, too, so
 one might do the work both on ev_stat callback
invocation and on ev_timer callback invocation).

 static ev_stat passwd;
 static ev_timer timer;

 static void
 timer_cb (EV_P_ ev_timer *w, int revents)
 {
 ev_timer_stop (EV_A_ w);

 /* now it's one second after the most recent passwd change */
 }

 static void
 stat_cb (EV_P_ ev_stat *w, int revents)
 {
 /* reset the one-second timer */
 ev_timer_again (EV_A_ &timer);
 }

 ...
 ev_stat_init (&passwd, stat_cb, "/etc/passwd", 0.);
 ev_stat_start (loop, &passwd);
 ev_timer_init (&timer, timer_cb, 0., 1.02);

ev_idle - when you've got nothing better to do...
Idle watchers trigger events when no other events of the same or higher
 priority are pending (prepare,
check and other idle watchers do not count
 as receiving "events").

That is, as long as your process is busy handling sockets or timeouts
 (or even signals, imagine) of the
same or higher priority it will not be
 triggered. But when your process is idle (or only lower-priority
watchers
 are pending), the idle watchers are being called once per event loop
 iteration - until stopped,
that is, or your process receives more events
 and becomes busy again with higher priority stuff.

The most noteworthy effect is that as long as any idle watchers are
 active, the process will not block
when waiting for new events.

Apart from keeping your process non-blocking (which is a useful
 effect on its own sometimes), idle
watchers are a good place to do
 "pseudo-background processing", or delay processing stuff to after
the
 event loop has handled all outstanding events.

Abusing an ev_idle watcher for its side-effect

As long as there is at least one active idle watcher, libev will never
 sleep unnecessarily. Or in other
words, it will loop as fast as possible.
 For this to work, the idle watcher doesn't need to be invoked at
all - the
 lowest priority will do.

This mode of operation can be useful together with an ev_check watcher,
 to do something on each
event loop iteration - for example to balance load
 between different connections.

ev.pod

Page 39

See Abusing an ev_check watcher for its side-effect for a longer
 example.

Watcher-Specific Functions and Data Members

ev_idle_init (ev_idle *, callback)

Initialises and configures the idle watcher - it has no parameters of any
 kind. There is a
ev_idle_set macro, but using it is utterly pointless,
 believe me.

Examples

Example: Dynamically allocate an ev_idle watcher, start it, and in the
 callback, free it. Also, use no
error checking, as usual.

 static void
 idle_cb (struct ev_loop *loop, ev_idle *w, int revents)
 {
 // stop the watcher
 ev_idle_stop (loop, w);

 // now we can free it
 free (w);

 // now do something you wanted to do when the program has
 // no longer anything immediate to do.
 }

 ev_idle *idle_watcher = malloc (sizeof (ev_idle));
 ev_idle_init (idle_watcher, idle_cb);
 ev_idle_start (loop, idle_watcher);

ev_prepare and ev_check - customise your event loop!
Prepare and check watchers are often (but not always) used in pairs:
 prepare watchers get invoked
before the process blocks and check watchers
 afterwards.

You must not call ev_run (or similar functions that enter the
 current event loop) or ev_loop_fork
from either ev_prepare or ev_check watchers. Other loops than the current one are fine,
 however.
The rationale behind this is that you do not need to check
 for recursion in those watchers, i.e. the
sequence will always be ev_prepare, blocking, ev_check so if you have one watcher of each
 kind
they will always be called in pairs bracketing the blocking call.

Their main purpose is to integrate other event mechanisms into libev and
 their use is somewhat
advanced. They could be used, for example, to track
 variable changes, implement your own
watchers, integrate net-snmp or a
 coroutine library and lots more. They are also occasionally useful if

you cache some data and want to flush it before blocking (for example,
 in X programs you might want
to do an XFlush () in an ev_prepare
 watcher).

This is done by examining in each prepare call which file descriptors
 need to be watched by the other
library, registering ev_io watchers
 for them and starting an ev_timer watcher for any timeouts
(many
 libraries provide exactly this functionality). Then, in the check watcher,
 you check for any
events that occurred (by checking the pending status
 of all watchers and stopping them) and call back
into the library. The
 I/O and timer callbacks will never actually be called (but must be valid

nevertheless, because you never know, you know?).

As another example, the Perl Coro module uses these hooks to integrate
 coroutines into libev
programs, by yielding to other active coroutines
 during each prepare and only letting the process
block if no coroutines
 are ready to run (it's actually more complicated: it only runs coroutines
 with
priority higher than or equal to the event loop and one coroutine
 of lower priority, but only once, using
idle watchers to keep the event
 loop from blocking if lower-priority coroutines are active, thus mapping
low-priority coroutines to idle/background tasks).

ev.pod

Page 40

When used for this purpose, it is recommended to give ev_check watchers
 highest (EV_MAXPRI)
priority, to ensure that they are being run before
 any other watchers after the poll (this doesn't matter
for ev_prepare
 watchers).

Also, ev_check watchers (and ev_prepare watchers, too) should not
 activate ("feed") events into
libev. While libev fully supports this, they
 might get executed before other ev_check watchers did
their job. As ev_check watchers are often used to embed other (non-libev) event
 loops those other
event loops might be in an unusable state until their ev_check watcher ran (always remind yourself
to coexist peacefully with
 others).

Abusing an ev_check watcher for its side-effect

ev_check (and less often also ev_prepare) watchers can also be
 useful because they are called
once per event loop iteration. For
 example, if you want to handle a large number of connections fairly,
you
 normally only do a bit of work for each active connection, and if there
 is more work to do, you wait
for the next event loop iteration, so other
 connections have a chance of making progress.

Using an ev_check watcher is almost enough: it will be called on the
 next event loop iteration.
However, that isn't as soon as possible -
 without external events, your ev_check watcher will not be
invoked.

This is where ev_idle watchers come in handy - all you need is a
 single global idle watcher that is
active as long as you have one active ev_check watcher. The ev_idle watcher makes sure the
event loop
 will not sleep, and the ev_check watcher makes sure a callback gets
 invoked. Neither
watcher alone can do that.

Watcher-Specific Functions and Data Members

ev_prepare_init (ev_prepare *, callback)

ev_check_init (ev_check *, callback)

Initialises and configures the prepare or check watcher - they have no
 parameters of any kind.
There are ev_prepare_set and ev_check_set
 macros, but using them is utterly, utterly,
utterly and completely
 pointless.

Examples

There are a number of principal ways to embed other event loops or modules
 into libev. Here are
some ideas on how to include libadns into libev
 (there is a Perl module named EV::ADNS that does
this, which you could
 use as a working example. Another Perl module named EV::Glib embeds a

Glib main context into libev, and finally, Glib::EV embeds EV into the
 Glib event loop).

Method 1: Add IO watchers and a timeout watcher in a prepare handler,
 and in a check watcher,
destroy them and call into libadns. What follows
 is pseudo-code only of course. This requires you to
either use a low
 priority for the check watcher or use ev_clear_pending explicitly, as
 the callbacks
for the IO/timeout watchers might not have been called yet.

 static ev_io iow [nfd];
 static ev_timer tw;

 static void
 io_cb (struct ev_loop *loop, ev_io *w, int revents)
 {
 }

 // create io watchers for each fd and a timer before blocking
 static void
 adns_prepare_cb (struct ev_loop *loop, ev_prepare *w, int revents)
 {
 int timeout = 3600000;
 struct pollfd fds [nfd];

ev.pod

Page 41

 // actual code will need to loop here and realloc etc.
 adns_beforepoll (ads, fds, &nfd, &timeout, timeval_from (ev_time ()));

 /* the callback is illegal, but won't be called as we stop during
check */
 ev_timer_init (&tw, 0, timeout * 1e-3, 0.);
 ev_timer_start (loop, &tw);

 // create one ev_io per pollfd
 for (int i = 0; i < nfd; ++i)
 {
 ev_io_init (iow + i, io_cb, fds [i].fd,
 ((fds [i].events & POLLIN ? EV_READ : 0)
 | (fds [i].events & POLLOUT ? EV_WRITE : 0)));

 fds [i].revents = 0;
 ev_io_start (loop, iow + i);
 }
 }

 // stop all watchers after blocking
 static void
 adns_check_cb (struct ev_loop *loop, ev_check *w, int revents)
 {
 ev_timer_stop (loop, &tw);

 for (int i = 0; i < nfd; ++i)
 {
 // set the relevant poll flags
 // could also call adns_processreadable etc. here
 struct pollfd *fd = fds + i;
 int revents = ev_clear_pending (iow + i);
 if (revents & EV_READ) fd->revents |= fd->events & POLLIN;
 if (revents & EV_WRITE) fd->revents |= fd->events & POLLOUT;

 // now stop the watcher
 ev_io_stop (loop, iow + i);
 }

 adns_afterpoll (adns, fds, nfd, timeval_from (ev_now (loop));
 }

Method 2: This would be just like method 1, but you run adns_afterpoll
 in the prepare watcher
and would dispose of the check watcher.

Method 3: If the module to be embedded supports explicit event
 notification (libadns does), you can
also make use of the actual watcher
 callbacks, and only destroy/create the watchers in the prepare
watcher.

 static void
 timer_cb (EV_P_ ev_timer *w, int revents)
 {
 adns_state ads = (adns_state)w->data;
 update_now (EV_A);

ev.pod

Page 42

 adns_processtimeouts (ads, &tv_now);
 }

 static void
 io_cb (EV_P_ ev_io *w, int revents)
 {
 adns_state ads = (adns_state)w->data;
 update_now (EV_A);

 if (revents & EV_READ) adns_processreadable (ads, w->fd, &tv_now);
 if (revents & EV_WRITE) adns_processwriteable (ads, w->fd, &tv_now);
 }

 // do not ever call adns_afterpoll

Method 4: Do not use a prepare or check watcher because the module you
 want to embed is not
flexible enough to support it. Instead, you can
 override their poll function. The drawback with this
solution is that the
 main loop is now no longer controllable by EV. The Glib::EV module uses
 this
approach, effectively embedding EV as a client into the horrible
 libglib event loop.

 static gint
 event_poll_func (GPollFD *fds, guint nfds, gint timeout)
 {
 int got_events = 0;

 for (n = 0; n < nfds; ++n)
 // create/start io watcher that sets the relevant bits in fds[n] and
 increment got_events

 if (timeout >= 0)
 // create/start timer

 // poll
 ev_run (EV_A_ 0);

 // stop timer again
 if (timeout >= 0)
 ev_timer_stop (EV_A_ &to);

 // stop io watchers again - their callbacks should have set
 for (n = 0; n < nfds; ++n)
 ev_io_stop (EV_A_ iow [n]);

 return got_events;
 }

ev_embed - when one backend isn't enough...
This is a rather advanced watcher type that lets you embed one event loop
 into another (currently
only ev_io events are supported in the embedded
 loop, other types of watchers might be handled in
a delayed or incorrect
 fashion and must not be used).

There are primarily two reasons you would want that: work around bugs and
 prioritise I/O.

As an example for a bug workaround, the kqueue backend might only support
 sockets on some

ev.pod

Page 43

platform, so it is unusable as generic backend, but you
 still want to make use of it because you have
many sockets and it scales
 so nicely. In this case, you would create a kqueue-based loop and embed

it into your default loop (which might use e.g. poll). Overall operation
 will be a bit slower because first
libev has to call poll and then kevent, but at least you can use both mechanisms for what they are

best: kqueue for scalable sockets and poll if you want it to work :)

As for prioritising I/O: under rare circumstances you have the case where
 some fds have to be
watched and handled very quickly (with low latency),
 and even priorities and idle watchers might have
too much overhead. In
 this case you would put all the high priority stuff in one loop and all
 the rest in a
second one, and embed the second one in the first.

As long as the watcher is active, the callback will be invoked every
 time there might be events
pending in the embedded loop. The callback
 must then call ev_embed_sweep (mainloop,
watcher) to make a single
 sweep and invoke their callbacks (the callback doesn't need to invoke the
ev_embed_sweep function directly, it could also start an idle watcher
 to give the embedded loop
strictly lower priority for example).

You can also set the callback to 0, in which case the embed watcher
 will automatically execute the
embedded loop sweep whenever necessary.

Fork detection will be handled transparently while the ev_embed watcher
 is active, i.e., the embedded
loop will automatically be forked when the
 embedding loop forks. In other cases, the user is
responsible for calling ev_loop_fork on the embedded loop.

Unfortunately, not all backends are embeddable: only the ones returned by
ev_embeddable_backends are, which, unfortunately, does not include any
 portable one.

So when you want to use this feature you will always have to be prepared
 that you cannot get an
embeddable loop. The recommended way to get around
 this is to have a separate variables for your
embeddable loop, try to
 create it, and if that fails, use the normal loop for everything.

ev_embed and fork

While the ev_embed watcher is running, forks in the embedding loop will
 automatically be applied to
the embedded loop as well, so no special
 fork handling is required in that case. When the watcher is
not running,
 however, it is still the task of the libev user to call ev_loop_fork ()
 as applicable.

Watcher-Specific Functions and Data Members

ev_embed_init (ev_embed *, callback, struct ev_loop *embedded_loop)

ev_embed_set (ev_embed *, struct ev_loop *embedded_loop)

Configures the watcher to embed the given loop, which must be
 embeddable. If the callback is
0, then ev_embed_sweep will be
 invoked automatically, otherwise it is the responsibility of
the callback
 to invoke it (it will continue to be called until the sweep has been done,
 if you do
not want that, you need to temporarily stop the embed watcher).

ev_embed_sweep (loop, ev_embed *)

Make a single, non-blocking sweep over the embedded loop. This works
 similarly to ev_run
(embedded_loop, EVRUN_NOWAIT), but in the most
 appropriate way for embedded loops.

struct ev_loop *other [read-only]

The embedded event loop.

Examples

Example: Try to get an embeddable event loop and embed it into the default
 event loop. If that is not
possible, use the default loop. The default
 loop is stored in loop_hi, while the embeddable loop is
stored in loop_lo (which is loop_hi in the case no embeddable loop can be
 used).

 struct ev_loop *loop_hi = ev_default_init (0);
 struct ev_loop *loop_lo = 0;
 ev_embed embed;

ev.pod

Page 44

 // see if there is a chance of getting one that works
 // (remember that a flags value of 0 means autodetection)
 loop_lo = ev_embeddable_backends () & ev_recommended_backends ()
 ? ev_loop_new (ev_embeddable_backends () & ev_recommended_backends ())
 : 0;

 // if we got one, then embed it, otherwise default to loop_hi
 if (loop_lo)
 {
 ev_embed_init (&embed, 0, loop_lo);
 ev_embed_start (loop_hi, &embed);
 }
 else
 loop_lo = loop_hi;

Example: Check if kqueue is available but not recommended and create
 a kqueue backend for use
with sockets (which usually work with any
 kqueue implementation). Store the kqueue/socket-only
event loop in loop_socket. (One might optionally use EVFLAG_NOENV, too).

 struct ev_loop *loop = ev_default_init (0);
 struct ev_loop *loop_socket = 0;
 ev_embed embed;

 if (ev_supported_backends () & ~ev_recommended_backends () &
EVBACKEND_KQUEUE)
 if ((loop_socket = ev_loop_new (EVBACKEND_KQUEUE))
 {
 ev_embed_init (&embed, 0, loop_socket);
 ev_embed_start (loop, &embed);
 }

 if (!loop_socket)
 loop_socket = loop;

 // now use loop_socket for all sockets, and loop for everything else

ev_fork - the audacity to resume the event loop after a fork
Fork watchers are called when a fork () was detected (usually because
 whoever is a good citizen
cared to tell libev about it by calling ev_loop_fork). The invocation is done before the event loop
blocks next
 and before ev_check watchers are being called, and only in the child
 after the fork. If
whoever good citizen calling ev_default_fork cheats
 and calls it in the wrong process, the fork
handlers will be invoked, too,
 of course.

The special problem of life after fork - how is it possible?

Most uses of fork () consist of forking, then some simple calls to set
 up/change the process
environment, followed by a call to exec(). This
 sequence should be handled by libev without any
problems.

This changes when the application actually wants to do event handling
 in the child, or both parent in
child, in effect "continuing" after the
 fork.

The default mode of operation (for libev, with application help to detect
 forks) is to duplicate all the
state in the child, as would be expected
 when either the parent or the child process continues.

When both processes want to continue using libev, then this is usually the
 wrong result. In that case,
usually one process (typically the parent) is
 supposed to continue with all watchers in place as before,

ev.pod

Page 45

while the other
 process typically wants to start fresh, i.e. without any active watchers.

The cleanest and most efficient way to achieve that with libev is to
 simply create a new event loop,
which of course will be "empty", and
 use that for new watchers. This has the advantage of not
touching more
 memory than necessary, and thus avoiding the copy-on-write, and the
 disadvantage of
having to use multiple event loops (which do not support
 signal watchers).

When this is not possible, or you want to use the default loop for
 other reasons, then in the process
that wants to start "fresh", call ev_loop_destroy (EV_DEFAULT) followed by ev_default_loop
 (...).
 Destroying the default loop will "orphan" (not stop) all registered
 watchers, so you have to be
careful not to execute code that modifies
 those watchers. Note also that in that case, you have to
re-register any
 signal watchers.

Watcher-Specific Functions and Data Members

ev_fork_init (ev_fork *, callback)

Initialises and configures the fork watcher - it has no parameters of any
 kind. There is a
ev_fork_set macro, but using it is utterly pointless,
 really.

ev_cleanup - even the best things end
Cleanup watchers are called just before the event loop is being destroyed
 by a call to
ev_loop_destroy.

While there is no guarantee that the event loop gets destroyed, cleanup
 watchers provide a
convenient method to install cleanup hooks for your
 program, worker threads and so on - you just to
make sure to destroy the
 loop when you want them to be invoked.

Cleanup watchers are invoked in the same way as any other watcher. Unlike
 all other watchers, they
do not keep a reference to the event loop (which
 makes a lot of sense if you think about it). Like all
other watchers, you
 can call libev functions in the callback, except ev_cleanup_start.

Watcher-Specific Functions and Data Members

ev_cleanup_init (ev_cleanup *, callback)

Initialises and configures the cleanup watcher - it has no parameters of
 any kind. There is a
ev_cleanup_set macro, but using it is utterly
 pointless, I assure you.

Example: Register an atexit handler to destroy the default loop, so any
 cleanup functions are called.

 static void
 program_exits (void)
 {
 ev_loop_destroy (EV_DEFAULT_UC);
 }

 ...
 atexit (program_exits);

ev_async - how to wake up an event loop
In general, you cannot use an ev_loop from multiple threads or other
 asynchronous sources such as
signal handlers (as opposed to multiple event
 loops - those are of course safe to use in different
threads).

Sometimes, however, you need to wake up an event loop you do not control,
 for example because it
belongs to another thread. This is what ev_async
 watchers do: as long as the ev_async watcher is
active, you can signal
 it by calling ev_async_send, which is thread- and signal safe.

This functionality is very similar to ev_signal watchers, as signals,
 too, are asynchronous in nature,
and signals, too, will be compressed
 (i.e. the number of callback invocations may be less than the
number of ev_async_send calls). In fact, you could use signal watchers as a kind
 of "global async

ev.pod

Page 46

watchers" by using a watcher on an otherwise unused
 signal, and ev_feed_signal to signal this
watcher from another thread,
 even without knowing which loop owns the signal.

Queueing

ev_async does not support queueing of data in any way. The reason
 is that the author does not
know of a simple (or any) algorithm for a
 multiple-writer-single-reader queue that works in all cases
and doesn't
 need elaborate support such as pthreads or unportable memory access
 semantics.

That means that if you want to queue data, you have to provide your own
 queue. But at least I can tell
you how to implement locking around your
 queue:

queueing from a signal handler context

To implement race-free queueing, you simply add to the queue in the signal
 handler but you
block the signal handler in the watcher callback. Here is
 an example that does that for some
fictitious SIGUSR1 handler:

 static ev_async mysig;

 static void
 sigusr1_handler (void)
 {
 sometype data;

 // no locking etc.
 queue_put (data);
 ev_async_send (EV_DEFAULT_ &mysig);
 }

 static void
 mysig_cb (EV_P_ ev_async *w, int revents)
 {
 sometype data;
 sigset_t block, prev;

 sigemptyset (&block);
 sigaddset (&block, SIGUSR1);
 sigprocmask (SIG_BLOCK, &block, &prev);

 while (queue_get (&data))
 process (data);

 if (sigismember (&prev, SIGUSR1)
 sigprocmask (SIG_UNBLOCK, &block, 0);
 }

(Note: pthreads in theory requires you to use pthread_setmask
 instead of sigprocmask
when you use threads, but libev doesn't do it
 either...).

queueing from a thread context

The strategy for threads is different, as you cannot (easily) block
 threads but you can easily
preempt them, so to queue safely you need to
 employ a traditional mutex lock, such as in this
pthread example:

 static ev_async mysig;
 static pthread_mutex_t mymutex = PTHREAD_MUTEX_INITIALIZER;

 static void
 otherthread (void)
 {

ev.pod

Page 47

 // only need to lock the actual queueing operation
 pthread_mutex_lock (&mymutex);
 queue_put (data);
 pthread_mutex_unlock (&mymutex);

 ev_async_send (EV_DEFAULT_ &mysig);
 }

 static void
 mysig_cb (EV_P_ ev_async *w, int revents)
 {
 pthread_mutex_lock (&mymutex);

 while (queue_get (&data))
 process (data);

 pthread_mutex_unlock (&mymutex);
 }

Watcher-Specific Functions and Data Members

ev_async_init (ev_async *, callback)

Initialises and configures the async watcher - it has no parameters of any
 kind. There is a
ev_async_set macro, but using it is utterly pointless,
 trust me.

ev_async_send (loop, ev_async *)

Sends/signals/activates the given ev_async watcher, that is, feeds
 an EV_ASYNC event on
the watcher into the event loop, and instantly
 returns.

Unlike ev_feed_event, this call is safe to do from other threads,
 signal or similar contexts
(see the discussion of EV_ATOMIC_T in the
 embedding section below on what exactly this
means).

Note that, as with other watchers in libev, multiple events might get
 compressed into a single
callback invocation (another way to look at
 this is that ev_async watchers are level-triggered:
they are set on ev_async_send, reset when the event loop detects that).

This call incurs the overhead of at most one extra system call per event
 loop iteration, if the
event loop is blocked, and no syscall at all if
 the event loop (or your program) is processing
events. That means that
 repeated calls are basically free (there is no need to avoid calls for

performance reasons) and that the overhead becomes smaller (typically
 zero) under load.

bool = ev_async_pending (ev_async *)

Returns a non-zero value when ev_async_send has been called on the
 watcher but the
event has not yet been processed (or even noted) by the
 event loop.

ev_async_send sets a flag in the watcher and wakes up the loop. When
 the loop iterates
next and checks for the watcher to have become active,
 it will reset the flag again.
ev_async_pending can be used to very
 quickly check whether invoking the loop might be a
good idea.

Not that this does not check whether the watcher itself is pending,
 only whether it has been
requested to make this watcher pending: there
 is a time window between the event loop
checking and resetting the async
 notification, and the callback being invoked.

OTHER FUNCTIONS
There are some other functions of possible interest. Described. Here. Now.

ev_once (loop, int fd, int events, ev_tstamp timeout, callback)

This function combines a simple timer and an I/O watcher, calls your
 callback on whichever

ev.pod

Page 48

event happens first and automatically stops both
 watchers. This is useful if you want to wait for
a single event on an fd
 or timeout without having to allocate/configure/start/stop/free one or

more watchers yourself.

If fd is less than 0, then no I/O watcher will be started and the events argument is being
ignored. Otherwise, an ev_io watcher for
 the given fd and events set will be created and
started.

If timeout is less than 0, then no timeout watcher will be
 started. Otherwise an ev_timer
watcher with after = timeout (and
 repeat = 0) will be started. 0 is a valid timeout.

The callback has the type void (*cb)(int revents, void *arg) and is
 passed an
revents set like normal event callbacks (a combination of EV_ERROR, EV_READ, EV_WRITE
or EV_TIMER) and the arg
 value passed to ev_once. Note that it is possible to receive both
 a
timeout and an io event at the same time - you probably should give io
 events precedence.

Example: wait up to ten seconds for data to appear on STDIN_FILENO.

 static void stdin_ready (int revents, void *arg)
 {
 if (revents & EV_READ)
 /* stdin might have data for us, joy! */;
 else if (revents & EV_TIMER)
 /* doh, nothing entered */;
 }

 ev_once (STDIN_FILENO, EV_READ, 10., stdin_ready, 0);

ev_feed_fd_event (loop, int fd, int revents)

Feed an event on the given fd, as if a file descriptor backend detected
 the given events.

ev_feed_signal_event (loop, int signum)

Feed an event as if the given signal occurred. See also ev_feed_signal,
 which is
async-safe.

COMMON OR USEFUL IDIOMS (OR BOTH)
This section explains some common idioms that are not immediately
 obvious. Note that examples are
sprinkled over the whole manual, and this
 section only contains stuff that wouldn't fit anywhere else.

ASSOCIATING CUSTOM DATA WITH A WATCHER
Each watcher has, by default, a void *data member that you can read
 or modify at any time: libev
will completely ignore it. This can be used
 to associate arbitrary data with your watcher. If you need
more data and
 don't want to allocate memory separately and store a pointer to it in that
 data member,
you can also "subclass" the watcher type and provide your own
 data:

 struct my_io
 {
 ev_io io;
 int otherfd;
 void *somedata;
 struct whatever *mostinteresting;
 };

 ...
 struct my_io w;
 ev_io_init (&w.io, my_cb, fd, EV_READ);

And since your callback will be called with a pointer to the watcher, you
 can cast it back to your own
type:

ev.pod

Page 49

 static void my_cb (struct ev_loop *loop, ev_io *w_, int revents)
 {
 struct my_io *w = (struct my_io *)w_;
 ...
 }

More interesting and less C-conformant ways of casting your callback
 function type instead have
been omitted.

BUILDING YOUR OWN COMPOSITE WATCHERS
Another common scenario is to use some data structure with multiple
 embedded watchers, in effect
creating your own watcher that combines
 multiple libev event sources into one "super-watcher":

 struct my_biggy
 {
 int some_data;
 ev_timer t1;
 ev_timer t2;
 }

In this case getting the pointer to my_biggy is a bit more
 complicated: Either you store the address of
your my_biggy struct in
 the data member of the watcher (for woozies or C++ coders), or you need

to use some pointer arithmetic using offsetof inside your watchers (for
 real programmers):

 #include <stddef.h>

 static void
 t1_cb (EV_P_ ev_timer *w, int revents)
 {
 struct my_biggy big = (struct my_biggy *)
 (((char *)w) - offsetof (struct my_biggy, t1));
 }

 static void
 t2_cb (EV_P_ ev_timer *w, int revents)
 {
 struct my_biggy big = (struct my_biggy *)
 (((char *)w) - offsetof (struct my_biggy, t2));
 }

AVOIDING FINISHING BEFORE RETURNING
Often you have structures like this in event-based programs:

 callback ()
 {
 free (request);
 }

 request = start_new_request (..., callback);

The intent is to start some "lengthy" operation. The request could be
 used to cancel the operation,
or do other things with it.

It's not uncommon to have code paths in start_new_request that
 immediately invoke the callback,
for example, to report errors. Or you add
 some caching layer that finds that it can skip the lengthy
aspects of the
 operation and simply invoke the callback with the result.

ev.pod

Page 50

The problem here is that this will happen before start_new_request
 has returned, so request is
not set.

Even if you pass the request by some safer means to the callback, you
 might want to do something to
the request after starting it, such as
 canceling it, which probably isn't working so well when the
callback has
 already been invoked.

A common way around all these issues is to make sure that start_new_request always returns
before the callback is invoked. If start_new_request immediately knows the result, it can
artificially
 delay invoking the callback by using a prepare or idle watcher for
 example, or more
sneakily, by reusing an existing (stopped) watcher and
 pushing it into the pending queue:

 ev_set_cb (watcher, callback);
 ev_feed_event (EV_A_ watcher, 0);

This way, start_new_request can safely return before the callback is
 invoked, while not delaying
callback invocation too much.

MODEL/NESTED EVENT LOOP INVOCATIONS AND EXIT CONDITIONS
Often (especially in GUI toolkits) there are places where you have modal interaction, which is most
easily implemented by recursively
 invoking ev_run.

This brings the problem of exiting - a callback might want to finish the
 main ev_run call, but not the
nested one (e.g. user clicked "Quit", but
 a modal "Are you sure?" dialog is still waiting), or just the
nested one
 and not the main one (e.g. user clocked "Ok" in a modal dialog), or some
 other
combination: In these cases, a simple ev_break will not work.

The solution is to maintain "break this loop" variable for each ev_run
 invocation, and use a loop
around ev_run until the condition is
 triggered, using EVRUN_ONCE:

 // main loop
 int exit_main_loop = 0;

 while (!exit_main_loop)
 ev_run (EV_DEFAULT_ EVRUN_ONCE);

 // in a modal watcher
 int exit_nested_loop = 0;

 while (!exit_nested_loop)
 ev_run (EV_A_ EVRUN_ONCE);

To exit from any of these loops, just set the corresponding exit variable:

 // exit modal loop
 exit_nested_loop = 1;

 // exit main program, after modal loop is finished
 exit_main_loop = 1;

 // exit both
 exit_main_loop = exit_nested_loop = 1;

THREAD LOCKING EXAMPLE
Here is a fictitious example of how to run an event loop in a different
 thread from where callbacks are
being invoked and watchers are
 created/added/removed.

ev.pod

Page 51

For a real-world example, see the EV::Loop::Async perl module,
 which uses exactly this technique
(which is suited for many high-level
 languages).

The example uses a pthread mutex to protect the loop data, a condition
 variable to wait for callback
invocations, an async watcher to notify the
 event loop thread and an unspecified mechanism to wake
up the main thread.

First, you need to associate some data with the event loop:

 typedef struct {
 mutex_t lock; /* global loop lock */
 ev_async async_w;
 thread_t tid;
 cond_t invoke_cv;
 } userdata;

 void prepare_loop (EV_P)
 {
 // for simplicity, we use a static userdata struct.
 static userdata u;

 ev_async_init (&u->async_w, async_cb);
 ev_async_start (EV_A_ &u->async_w);

 pthread_mutex_init (&u->lock, 0);
 pthread_cond_init (&u->invoke_cv, 0);

 // now associate this with the loop
 ev_set_userdata (EV_A_ u);
 ev_set_invoke_pending_cb (EV_A_ l_invoke);
 ev_set_loop_release_cb (EV_A_ l_release, l_acquire);

 // then create the thread running ev_run
 pthread_create (&u->tid, 0, l_run, EV_A);
 }

The callback for the ev_async watcher does nothing: the watcher is used
 solely to wake up the event
loop so it takes notice of any new watchers
 that might have been added:

 static void
 async_cb (EV_P_ ev_async *w, int revents)
 {
 // just used for the side effects
 }

The l_release and l_acquire callbacks simply unlock/lock the mutex
 protecting the loop data,
respectively.

 static void
 l_release (EV_P)
 {
 userdata *u = ev_userdata (EV_A);
 pthread_mutex_unlock (&u->lock);
 }

 static void

ev.pod

Page 52

 l_acquire (EV_P)
 {
 userdata *u = ev_userdata (EV_A);
 pthread_mutex_lock (&u->lock);
 }

The event loop thread first acquires the mutex, and then jumps straight
 into ev_run:

 void *
 l_run (void *thr_arg)
 {
 struct ev_loop *loop = (struct ev_loop *)thr_arg;

 l_acquire (EV_A);
 pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS, 0);
 ev_run (EV_A_ 0);
 l_release (EV_A);

 return 0;
 }

Instead of invoking all pending watchers, the l_invoke callback will
 signal the main thread via some
unspecified mechanism (signals? pipe
 writes? Async::Interrupt?) and then waits until all pending
watchers
 have been called (in a while loop because a) spurious wakeups are possible
 and b) skipping
inter-thread-communication when there are no pending
 watchers is very beneficial):

 static void
 l_invoke (EV_P)
 {
 userdata *u = ev_userdata (EV_A);

 while (ev_pending_count (EV_A))
 {
 wake_up_other_thread_in_some_magic_or_not_so_magic_way ();
 pthread_cond_wait (&u->invoke_cv, &u->lock);
 }
 }

Now, whenever the main thread gets told to invoke pending watchers, it
 will grab the lock, call
ev_invoke_pending and then signal the loop
 thread to continue:

 static void
 real_invoke_pending (EV_P)
 {
 userdata *u = ev_userdata (EV_A);

 pthread_mutex_lock (&u->lock);
 ev_invoke_pending (EV_A);
 pthread_cond_signal (&u->invoke_cv);
 pthread_mutex_unlock (&u->lock);
 }

Whenever you want to start/stop a watcher or do other modifications to an
 event loop, you will now
have to lock:

 ev_timer timeout_watcher;

ev.pod

Page 53

 userdata *u = ev_userdata (EV_A);

 ev_timer_init (&timeout_watcher, timeout_cb, 5.5, 0.);

 pthread_mutex_lock (&u->lock);
 ev_timer_start (EV_A_ &timeout_watcher);
 ev_async_send (EV_A_ &u->async_w);
 pthread_mutex_unlock (&u->lock);

Note that sending the ev_async watcher is required because otherwise
 an event loop currently
blocking in the kernel will have no knowledge
 about the newly added timer. By waking up the loop it
will pick up any new
 watchers in the next event loop iteration.

THREADS, COROUTINES, CONTINUATIONS, QUEUES... INSTEAD OF CALLBACKS
While the overhead of a callback that e.g. schedules a thread is small, it
 is still an overhead. If you
embed libev, and your main usage is with some
 kind of threads or coroutines, you might want to
customise libev so that
 doesn't need callbacks anymore.

Imagine you have coroutines that you can switch to using a function switch_to (coro), that libev
runs in a coroutine called libev_coro
 and that due to some magic, the currently active coroutine is
stored in a
 global called current_coro. Then you can build your own "wait for libev
 event" primitive
by changing EV_CB_DECLARE and EV_CB_INVOKE (note
 the differing ; conventions):

 #define EV_CB_DECLARE(type) struct my_coro *cb;
 #define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb)

That means instead of having a C callback function, you store the
 coroutine to switch to in each
watcher, and instead of having libev call
 your callback, you instead have it switch to that coroutine.

A coroutine might now wait for an event with a function called wait_for_event. (the watcher needs
to be started, as always, but it doesn't
 matter when, or whether the watcher is active or not when this
function is
 called):

 void
 wait_for_event (ev_watcher *w)
 {
 ev_set_cb (w, current_coro);
 switch_to (libev_coro);
 }

That basically suspends the coroutine inside wait_for_event and
 continues the libev coroutine,
which, when appropriate, switches back to
 this or any other coroutine.

You can do similar tricks if you have, say, threads with an event queue -
 instead of storing a
coroutine, you store the queue object and instead of
 switching to a coroutine, you push the watcher
onto the queue and notify
 any waiters.

To embed libev, see EMBEDDING, but in short, it's easiest to create two
 files, my_ev.h and my_ev.c
that include the respective libev files:

 // my_ev.h
 #define EV_CB_DECLARE(type) struct my_coro *cb;
 #define EV_CB_INVOKE(watcher) switch_to ((watcher)->cb)
 #include "../libev/ev.h"

 // my_ev.c
 #define EV_H "my_ev.h"

ev.pod

Page 54

 #include "../libev/ev.c"

And then use my_ev.h when you would normally use ev.h, and compile my_ev.c into your project.
When properly specifying include paths, you
 can even use ev.h as header file name directly.

LIBEVENT EMULATION
Libev offers a compatibility emulation layer for libevent. It cannot
 emulate the internals of libevent, so
here are some usage hints:

* Only the libevent-1.4.1-beta API is being emulated.

This was the newest libevent version available when libev was implemented,
 and is still mostly
unchanged in 2010.

* Use it by including <event.h>, as usual.

* The following members are fully supported: ev_base, ev_callback,
 ev_arg, ev_fd, ev_res,
ev_events.

* Avoid using ev_flags and the EVLIST_*-macros, while it is
 maintained by libev, it does not work
exactly the same way as in libevent (consider
 it a private API).

* Priorities are not currently supported. Initialising priorities
 will fail and all watchers will have the same
priority, even though there
 is an ev_pri field.

* In libevent, the last base created gets the signals, in libev, the
 base that registered the signal gets
the signals.

* Other members are not supported.

* The libev emulation is not ABI compatible to libevent, you need
 to use the libev header file and
library.

C++ SUPPORT
C API

The normal C API should work fine when used from C++: both ev.h and the
 libev sources can be
compiled as C++. Therefore, code that uses the C API
 will work fine.

Proper exception specifications might have to be added to callbacks passed
 to libev: exceptions may
be thrown only from watcher callbacks, all
 other callbacks (allocator, syserr, loop acquire/release and
periodic
 reschedule callbacks) must not throw exceptions, and might need a throw
 () specification.
If you have code that needs to be compiled as both C
 and C++ you can use the EV_THROW macro for
this:

 static void
 fatal_error (const char *msg) EV_THROW
 {
 perror (msg);
 abort ();
 }

 ...
 ev_set_syserr_cb (fatal_error);

The only API functions that can currently throw exceptions are ev_run, ev_invoke,
ev_invoke_pending and ev_loop_destroy (the latter
 because it runs cleanup watchers).

Throwing exceptions in watcher callbacks is only supported if libev itself
 is compiled with a C++
compiler or your C and C++ environments allow
 throwing exceptions through C libraries (most do).

ev.pod

Page 55

C++ API
Libev comes with some simplistic wrapper classes for C++ that mainly allow
 you to use some
convenience methods to start/stop watchers and also change
 the callback model to a model using
method callbacks on objects.

To use it,

 #include <ev++.h>

This automatically includes ev.h and puts all of its definitions (many
 of them macros) into the global
namespace. All C++ specific things are
 put into the ev namespace. It should support all the same
embedding
 options as ev.h, most notably EV_MULTIPLICITY.

Care has been taken to keep the overhead low. The only data member the C++
 classes add
(compared to plain C-style watchers) is the event loop pointer
 that the watcher is associated with (or
no additional members at all if
 you disable EV_MULTIPLICITY when embedding libev).

Currently, functions, static and non-static member functions and classes
 with operator () can be
used as callbacks. Other types should be easy
 to add as long as they only need one additional
pointer for context. If
 you need support for other types of functors please contact the author

(preferably after implementing it).

For all this to work, your C++ compiler either has to use the same calling
 conventions as your C
compiler (for static member functions), or you have
 to embed libev and compile libev itself as C++.

Here is a list of things available in the ev namespace:

ev::READ, ev::WRITE etc.

These are just enum values with the same values as the EV_READ etc.
 macros from ev.h.

ev::tstamp, ev::now

Aliases to the same types/functions as with the ev_ prefix.

ev::io, ev::timer, ev::periodic, ev::idle, ev::sig etc.

For each ev_TYPE watcher in ev.h there is a corresponding class of
 the same name in the ev
namespace, with the exception of ev_signal
 which is called ev::sig to avoid clashes with
the signal macro
 defined by many implementations.

All of those classes have these methods:

ev::TYPE::TYPE ()

ev::TYPE::TYPE (loop)

ev::TYPE::~TYPE

The constructor (optionally) takes an event loop to associate the watcher
 with. If it is
omitted, it will use EV_DEFAULT.

The constructor calls ev_init for you, which means you have to call the set method
before starting it.

It will not set a callback, however: You have to call the templated set
 method to set a
callback before you can start the watcher.

(The reason why you have to use a method is a limitation in C++ which does
 not allow
explicit template arguments for constructors).

The destructor automatically stops the watcher if it is active.

w->set<class, &class::method> (object *)

This method sets the callback method to call. The method has to have a
 signature of
void (*)(ev_TYPE &, int), it receives the watcher as
 first argument and the
revents as second. The object must be given as
 parameter and is stored in the data

ev.pod

Page 56

member of the watcher.

This method synthesizes efficient thunking code to call your method from
 the C
callback that libev requires. If your compiler can inline your
 callback (i.e. it is visible to
it at the place of the set call and
 your compiler is good :), then the method will be fully
inlined into the
 thunking function, making it as fast as a direct C callback.

Example: simple class declaration and watcher initialisation

 struct myclass
 {
 void io_cb (ev::io &w, int revents) { }
 }

 myclass obj;
 ev::io iow;
 iow.set <myclass, &myclass::io_cb> (&obj);

w->set (object *)

This is a variation of a method callback - leaving out the method to call
 will default the
method to operator (), which makes it possible to use
 functor objects without
having to manually specify the operator () all
 the time. Incidentally, you can then
also leave out the template argument
 list.

The operator () method prototype must be void operator ()(watcher &w,

int revents).

See the method-set above for more details.

Example: use a functor object as callback.

 struct myfunctor
 {
 void operator() (ev::io &w, int revents)
 {
 ...
 }
 }

 myfunctor f;

 ev::io w;
 w.set (&f);

w->set<function> (void *data = 0)

Also sets a callback, but uses a static method or plain function as
 callback. The
optional data argument will be stored in the watcher's data member and is free for
you to use.

The prototype of the function must be void (*)(ev::TYPE &w, int).

See the method-set above for more details.

Example: Use a plain function as callback.

 static void io_cb (ev::io &w, int revents) { }
 iow.set <io_cb> ();

w->set (loop)

Associates a different struct ev_loop with this watcher. You can only
 do this when
the watcher is inactive (and not pending either).

w->set ([arguments])

ev.pod

Page 57

Basically the same as ev_TYPE_set (except for ev::embed watchers>),
 with the
same arguments. Either this method or a suitable start method
 must be called at least
once. Unlike the C counterpart, an active watcher
 gets automatically stopped and
restarted when reconfiguring it with this
 method.

For ev::embed watchers this method is called set_embed, to avoid
 clashing with the
set (loop) method.

w->start ()

Starts the watcher. Note that there is no loop argument, as the
 constructor already
stores the event loop.

w->start ([arguments])

Instead of calling set and start methods separately, it is often
 convenient to wrap
them in one call. Uses the same type of arguments as
 the configure set method of the
watcher.

w->stop ()

Stops the watcher if it is active. Again, no loop argument.

w->again () (ev::timer, ev::periodic only)

For ev::timer and ev::periodic, this invokes the corresponding
ev_TYPE_again function.

w->sweep () (ev::embed only)

Invokes ev_embed_sweep.

w->update () (ev::stat only)

Invokes ev_stat_stat.

Example: Define a class with two I/O and idle watchers, start the I/O
 watchers in the constructor.

 class myclass
 {
 ev::io io ; void io_cb (ev::io &w, int revents);
 ev::io io2 ; void io2_cb (ev::io &w, int revents);
 ev::idle idle; void idle_cb (ev::idle &w, int revents);

 myclass (int fd)
 {
 io .set <myclass, &myclass::io_cb > (this);
 io2 .set <myclass, &myclass::io2_cb > (this);
 idle.set <myclass, &myclass::idle_cb> (this);

 io.set (fd, ev::WRITE); // configure the watcher
 io.start (); // start it whenever convenient

 io2.start (fd, ev::READ); // set + start in one call
 }
 };

OTHER LANGUAGE BINDINGS
Libev does not offer other language bindings itself, but bindings for a
 number of languages exist in the
form of third-party packages. If you know
 any interesting language binding in addition to the ones
listed here, drop
 me a note.

Perl

ev.pod

Page 58

The EV module implements the full libev API and is actually used to test
 libev. EV is
developed together with libev. Apart from the EV core module,
 there are additional modules
that implement libev-compatible interfaces
 to libadns (EV::ADNS, but AnyEvent::DNS is
preferred nowadays), Net::SNMP (Net::SNMP::EV) and the libglib event core (
Glib::EV
 and EV::Glib).

It can be found and installed via CPAN, its homepage is at http://software.schmorp.de/pkg/EV.

Python

Python bindings can be found at http://code.google.com/p/pyev/. It
 seems to be quite
complete and well-documented.

Ruby

Tony Arcieri has written a ruby extension that offers access to a subset
 of the libev API and
adds file handle abstractions, asynchronous DNS and
 more on top of it. It can be found via
gem servers. Its homepage is at http://rev.rubyforge.org/.

Roger Pack reports that using the link order -lws2_32 -lmsvcrt-ruby-190
 makes rev
work even on mingw.

Haskell

A haskell binding to libev is available at
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hlibev.

D

Leandro Lucarella has written a D language binding (ev.d) for libev, to
 be found at
http://www.llucax.com.ar/proj/ev.d/index.html.

Ocaml

Erkki Seppala has written Ocaml bindings for libev, to be found at
http://modeemi.cs.tut.fi/~flux/software/ocaml-ev/.

Lua

Brian Maher has written a partial interface to libev for lua (at the
 time of this writing, only
ev_io and ev_timer), to be found at http://github.com/brimworks/lua-ev.

Javascript

Node.js (http://nodejs.org) uses libev as the underlying event library.

Others

There are others, and I stopped counting.

MACRO MAGIC
Libev can be compiled with a variety of options, the most fundamental
 of which is EV_MULTIPLICITY
. This option determines whether (most)
 functions and callbacks have an initial struct ev_loop *
argument.

To make it easier to write programs that cope with either variant, the
 following macros are defined:

EV_A, EV_A_

This provides the loop argument for functions, if one is required ("ev
 loop argument"). The
EV_A form is used when this is the sole argument, EV_A_ is used when other arguments are
following. Example:

 ev_unref (EV_A);
 ev_timer_add (EV_A_ watcher);
 ev_run (EV_A_ 0);

It assumes the variable loop of type struct ev_loop * is in scope,
 which is often

ev.pod

Page 59

provided by the following macro.

EV_P, EV_P_

This provides the loop parameter for functions, if one is required ("ev
 loop parameter"). The
EV_P form is used when this is the sole parameter, EV_P_ is used when other parameters are
following. Example:

 // this is how ev_unref is being declared
 static void ev_unref (EV_P);

 // this is how you can declare your typical callback
 static void cb (EV_P_ ev_timer *w, int revents)

It declares a parameter loop of type struct ev_loop *, quite
 suitable for use with EV_A.

EV_DEFAULT, EV_DEFAULT_

Similar to the other two macros, this gives you the value of the default
 loop, if multiple loops
are supported ("ev loop default"). The default loop
 will be initialised if it isn't already initialised.

For non-multiplicity builds, these macros do nothing, so you always have
 to initialise the loop
somewhere.

EV_DEFAULT_UC, EV_DEFAULT_UC_

Usage identical to EV_DEFAULT and EV_DEFAULT_, but requires that the
 default loop has
been initialised (UC == unchecked). Their behaviour
 is undefined when the default loop has
not been initialised by a previous
 execution of EV_DEFAULT, EV_DEFAULT_ or
ev_default_init (...).

It is often prudent to use EV_DEFAULT when initialising the first
 watcher in a function but use
EV_DEFAULT_UC afterwards.

Example: Declare and initialise a check watcher, utilising the above
 macros so it will work regardless
of whether multiple loops are supported
 or not.

 static void
 check_cb (EV_P_ ev_timer *w, int revents)
 {
 ev_check_stop (EV_A_ w);
 }

 ev_check check;
 ev_check_init (&check, check_cb);
 ev_check_start (EV_DEFAULT_ &check);
 ev_run (EV_DEFAULT_ 0);

EMBEDDING
Libev can (and often is) directly embedded into host
 applications. Examples of applications that
embed it include the Deliantra
 Game Server, the EV perl module, the GNU Virtual Private Ethernet
(gvpe)
 and rxvt-unicode.

The goal is to enable you to just copy the necessary files into your
 source directory without having to
change even a single line in them, so
 you can easily upgrade by simply copying (or having a
checked-out copy of
 libev somewhere in your source tree).

FILESETS
Depending on what features you need you need to include one or more sets of files
 in your
application.

ev.pod

Page 60

CORE EVENT LOOP

To include only the libev core (all the ev_* functions), with manual
 configuration (no autoconf):

 #define EV_STANDALONE 1
 #include "ev.c"

This will automatically include ev.h, too, and should be done in a
 single C source file only to provide
the function implementations. To use
 it, do the same for ev.h in all files wishing to use this API (best

done by writing a wrapper around ev.h that you can include instead and
 where you can put other
configuration options):

 #define EV_STANDALONE 1
 #include "ev.h"

Both header files and implementation files can be compiled with a C++
 compiler (at least, that's a
stated goal, and breakage will be treated
 as a bug).

You need the following files in your source tree, or in a directory
 in your include path (e.g. in libev/
when using -Ilibev):

 ev.h
 ev.c
 ev_vars.h
 ev_wrap.h

 ev_win32.c required on win32 platforms only

 ev_select.c only when select backend is enabled (which is enabled by
 default)
 ev_poll.c only when poll backend is enabled (disabled by default)
 ev_epoll.c only when the epoll backend is enabled (disabled by
default)
 ev_kqueue.c only when the kqueue backend is enabled (disabled by
default)
 ev_port.c only when the solaris port backend is enabled (disabled
by default)

ev.c includes the backend files directly when enabled, so you only need
 to compile this single file.

LIBEVENT COMPATIBILITY API

To include the libevent compatibility API, also include:

 #include "event.c"

in the file including ev.c, and:

 #include "event.h"

in the files that want to use the libevent API. This also includes ev.h.

You need the following additional files for this:

 event.h
 event.c

ev.pod

Page 61

AUTOCONF SUPPORT

Instead of using EV_STANDALONE=1 and providing your configuration in
 whatever way you want, you
can also m4_include([libev.m4]) in your configure.ac and leave EV_STANDALONE undefined.
ev.c will then
 include config.h and configure itself accordingly.

For this of course you need the m4 file:

 libev.m4

PREPROCESSOR SYMBOLS/MACROS
Libev can be configured via a variety of preprocessor symbols you have to
 define before including (or
compiling) any of its files. The default in
 the absence of autoconf is documented for every option.

Symbols marked with "(h)" do not change the ABI, and can have different
 values when compiling libev
vs. including ev.h, so it is permissible
 to redefine them before including ev.h without breaking
compatibility
 to a compiled library. All other symbols change the ABI, which means all
 users of libev
and the libev code itself must be compiled with compatible
 settings.

EV_COMPAT3 (h)

Backwards compatibility is a major concern for libev. This is why this
 release of libev comes
with wrappers for the functions and symbols that
 have been renamed between libev version 3
and 4.

You can disable these wrappers (to test compatibility with future
 versions) by defining
EV_COMPAT3 to 0 when compiling your
 sources. This has the additional advantage that you
can drop the struct
 from struct ev_loop declarations, as libev will provide an ev_loop

typedef in that case.

In some future version, the default for EV_COMPAT3 will become 0,
 and in some even more
future version the compatibility code will be
 removed completely.

EV_STANDALONE (h)

Must always be 1 if you do not use autoconf configuration, which
 keeps libev from including
config.h, and it also defines dummy
 implementations for some libevent functions (such as
logging, which is not
 supported). It will also not define any of the structs usually found in
event.h that are not directly supported by the libev core alone.

In standalone mode, libev will still try to automatically deduce the
 configuration, but has to be
more conservative.

EV_USE_FLOOR

If defined to be 1, libev will use the floor () function for its
 periodic reschedule calculations,
otherwise libev will fall back on a
 portable (slower) implementation. If you enable this, you
usually have to
 link against libm or something equivalent. Enabling this when the floor

function is not available will fail, so the safe default is to not enable
 this.

EV_USE_MONOTONIC

If defined to be 1, libev will try to detect the availability of the
 monotonic clock option at both
compile time and runtime. Otherwise no
 use of the monotonic clock option will be attempted. If
you enable this,
 you usually have to link against librt or something similar. Enabling it
 when
the functionality isn't available is safe, though, although you have
 to make sure you link
against any libraries where the clock_gettime
 function is hiding in (often -lrt). See also
EV_USE_CLOCK_SYSCALL.

EV_USE_REALTIME

If defined to be 1, libev will try to detect the availability of the
 real-time clock option at compile
time (and assume its availability
 at runtime if successful). Otherwise no use of the real-time
clock
 option will be attempted. This effectively replaces gettimeofday
 by clock_get
(CLOCK_REALTIME, ...) and will not normally affect
 correctness. See the note about

ev.pod

Page 62

libraries in the description of EV_USE_MONOTONIC, though. Defaults to the opposite value of
EV_USE_CLOCK_SYSCALL.

EV_USE_CLOCK_SYSCALL

If defined to be 1, libev will try to use a direct syscall instead
 of calling the system-provided
clock_gettime function. This option
 exists because on GNU/Linux, clock_gettime is in
librt, but librt
 unconditionally pulls in libpthread, slowing down single-threaded

programs needlessly. Using a direct syscall is slightly slower (in
 theory), because no optimised
vdso implementation can be used, but avoids
 the pthread dependency. Defaults to 1 on
GNU/Linux with glibc 2.x or
 higher, as it simplifies linking (no need for -lrt).

EV_USE_NANOSLEEP

If defined to be 1, libev will assume that nanosleep () is available
 and will use it for delays.
Otherwise it will use select ().

EV_USE_EVENTFD

If defined to be 1, then libev will assume that eventfd () is
 available and will probe for
kernel support at runtime. This will improve ev_signal and ev_async performance and
reduce resource consumption.
 If undefined, it will be enabled if the headers indicate
GNU/Linux + Glibc
 2.7 or newer, otherwise disabled.

EV_USE_SELECT

If undefined or defined to be 1, libev will compile in support for the select(2) backend. No
attempt at auto-detection will be done: if no
 other method takes over, select will be it.
Otherwise the select backend
 will not be compiled in.

EV_SELECT_USE_FD_SET

If defined to 1, then the select backend will use the system fd_set
 structure. This is useful if
libev doesn't compile due to a missing NFDBITS or fd_mask definition or it mis-guesses the
bitset layout
 on exotic systems. This usually limits the range of file descriptors to
 some low
limit such as 1024 or might have other limitations (winsocket
 only allows 64 sockets). The
FD_SETSIZE macro, set before compilation,
 configures the maximum size of the fd_set.

EV_SELECT_IS_WINSOCKET

When defined to 1, the select backend will assume that
 select/socket/connect etc. don't
understand file descriptors but
 wants osf handles on win32 (this is the case when the select to
be used is the winsock select). This means that it will call _get_osfhandle on the fd to
convert it to an OS handle. Otherwise,
 it is assumed that all these functions actually work on
fds, even
 on win32. Should not be defined on non-win32 platforms.

EV_FD_TO_WIN32_HANDLE(fd)

If EV_SELECT_IS_WINSOCKET is enabled, then libev needs a way to map
 file descriptors to
socket handles. When not defining this symbol (the
 default), then libev will call
_get_osfhandle, which is usually
 correct. In some cases, programs use their own file
descriptor management,
 in which case they can provide this function to map fds to socket
handles.

EV_WIN32_HANDLE_TO_FD(handle)

If EV_SELECT_IS_WINSOCKET then libev maps handles to file descriptors
 using the standard
_open_osfhandle function. For programs implementing
 their own fd to handle mapping,
overwriting this function makes it easier
 to do so. This can be done by defining this macro to
an appropriate value.

EV_WIN32_CLOSE_FD(fd)

If programs implement their own fd to handle mapping on win32, then this
 macro can be used
to override the close function, useful to unregister
 file descriptors again. Note that the
replacement function has to close
 the underlying OS handle.

ev.pod

Page 63

EV_USE_WSASOCKET

If defined to be 1, libev will use WSASocket to create its internal
 communication socket, which
works better in some environments. Otherwise,
 the normal socket function will be used,
which works better in other
 environments.

EV_USE_POLL

If defined to be 1, libev will compile in support for the poll(2)
 backend. Otherwise it will be
enabled on non-win32 platforms. It
 takes precedence over select.

EV_USE_EPOLL

If defined to be 1, libev will compile in support for the Linux epoll(7) backend. Its availability
will be detected at runtime,
 otherwise another method will be used as fallback. This is the
preferred
 backend for GNU/Linux systems. If undefined, it will be enabled if the
 headers
indicate GNU/Linux + Glibc 2.4 or newer, otherwise disabled.

EV_USE_KQUEUE

If defined to be 1, libev will compile in support for the BSD style kqueue(2) backend. Its actual
availability will be detected at runtime,
 otherwise another method will be used as fallback. This
is the preferred
 backend for BSD and BSD-like systems, although on most BSDs kqueue only

supports some types of fds correctly (the only platform we found that
 supports ptys for
example was NetBSD), so kqueue might be compiled in, but
 not be used unless explicitly
requested. The best way to use it is to find
 out whether kqueue supports your type of fd
properly and use an embedded
 kqueue loop.

EV_USE_PORT

If defined to be 1, libev will compile in support for the Solaris
 10 port style backend. Its
availability will be detected at runtime,
 otherwise another method will be used as fallback. This
is the preferred
 backend for Solaris 10 systems.

EV_USE_DEVPOLL

Reserved for future expansion, works like the USE symbols above.

EV_USE_INOTIFY

If defined to be 1, libev will compile in support for the Linux inotify
 interface to speed up
ev_stat watchers. Its actual availability will
 be detected at runtime. If undefined, it will be
enabled if the headers
 indicate GNU/Linux + Glibc 2.4 or newer, otherwise disabled.

EV_NO_SMP

If defined to be 1, libev will assume that memory is always coherent
 between threads, that is,
threads can be used, but threads never run on
 different cpus (or different cpu cores). This
reduces dependencies
 and makes libev faster.

EV_NO_THREADS

If defined to be 1, libev will assume that it will never be called from
 different threads (that
includes signal handlers), which is a stronger
 assumption than EV_NO_SMP, above. This
reduces dependencies and makes
 libev faster.

EV_ATOMIC_T

Libev requires an integer type (suitable for storing 0 or 1) whose
 access is atomic with respect
to other threads or signal contexts. No
 such type is easily found in the C language, so you can
provide your own
 type that you know is safe for your purposes. It is used both for signal

handler "locking" as well as for signal and thread safety in ev_async
 watchers.

In the absence of this define, libev will use sig_atomic_t volatile
 (from signal.h), which
is usually good enough on most platforms.

EV_H (h)

ev.pod

Page 64

The name of the ev.h header file used to include it. The default if
 undefined is "ev.h" in
event.h, ev.c and ev++.h. This can be
 used to virtually rename the ev.h header file in case of
conflicts.

EV_CONFIG_H (h)

If EV_STANDALONE isn't 1, this variable can be used to override ev.c's idea of where to find
the config.h file, similarly to EV_H, above.

EV_EVENT_H (h)

Similarly to EV_H, this macro can be used to override event.c's idea
 of how the event.h header
can be found, the default is "event.h".

EV_PROTOTYPES (h)

If defined to be 0, then ev.h will not define any function
 prototypes, but still define all the
structs and other symbols. This is
 occasionally useful if you want to provide your own wrapper
functions
 around libev functions.

EV_MULTIPLICITY

If undefined or defined to 1, then all event-loop-specific functions
 will have the struct
ev_loop * as first argument, and you can create
 additional independent event loops.
Otherwise there will be no support
 for multiple event loops and there is no first event loop
pointer
 argument. Instead, all functions act on the single default loop.

Note that EV_DEFAULT and EV_DEFAULT_ will no longer provide a
 default loop when
multiplicity is switched off - you always have to
 initialise the loop manually in this case.

EV_MINPRI

EV_MAXPRI

The range of allowed priorities. EV_MINPRI must be smaller or equal to EV_MAXPRI, but
otherwise there are no non-obvious limitations. You can
 provide for more priorities by
overriding those symbols (usually defined
 to be -2 and 2, respectively).

When doing priority-based operations, libev usually has to linearly search
 all the priorities, so
having many of them (hundreds) uses a lot of space
 and time, so using the defaults of five
priorities (-2 .. +2) is usually
 fine.

If your embedding application does not need any priorities, defining these
 both to 0 will save
some memory and CPU.

EV_PERIODIC_ENABLE, EV_IDLE_ENABLE, EV_EMBED_ENABLE, EV_STAT_ENABLE,

EV_PREPARE_ENABLE, EV_CHECK_ENABLE, EV_FORK_ENABLE, EV_SIGNAL_ENABLE,

EV_ASYNC_ENABLE, EV_CHILD_ENABLE.

If undefined or defined to be 1 (and the platform supports it), then
 the respective watcher type
is supported. If defined to be 0, then it
 is not. Disabling watcher types mainly saves code size.

EV_FEATURES

If you need to shave off some kilobytes of code at the expense of some
 speed (but with the
full API), you can define this symbol to request
 certain subsets of functionality. The default is
to enable all features
 that can be enabled on the platform.

A typical way to use this symbol is to define it to 0 (or to a bitset
 with some broad features you
want) and then selectively re-enable
 additional parts you want, for example if you want
everything minimal,
 but multiple event loop support, async and child watchers and the poll

backend, use this:

 #define EV_FEATURES 0
 #define EV_MULTIPLICITY 1
 #define EV_USE_POLL 1
 #define EV_CHILD_ENABLE 1
 #define EV_ASYNC_ENABLE 1

ev.pod

Page 65

The actual value is a bitset, it can be a combination of the following
 values (by default, all of
these are enabled):

1 - faster/larger code

Use larger code to speed up some operations.

Currently this is used to override some inlining decisions (enlarging the
 code size by
roughly 30% on amd64).

When optimising for size, use of compiler flags such as -Os with
 gcc is recommended,
as well as -DNDEBUG, as libev contains a number of
 assertions.

The default is off when __OPTIMIZE_SIZE__ is defined by your compiler
 (e.g. gcc
with -Os).

2 - faster/larger data structures

Replaces the small 2-heap for timer management by a faster 4-heap, larger
 hash table
sizes and so on. This will usually further increase code size
 and can additionally have
an effect on the size of data structures at
 runtime.

The default is off when __OPTIMIZE_SIZE__ is defined by your compiler
 (e.g. gcc
with -Os).

4 - full API configuration

This enables priorities (sets EV_MAXPRI=2 and EV_MINPRI=-2), and
 enables
multiplicity (EV_MULTIPLICITY=1).

8 - full API

This enables a lot of the "lesser used" API functions. See ev.h for
 details on which
parts of the API are still available without this
 feature, and do not complain if this
subset changes over time.

16 - enable all optional watcher types

Enables all optional watcher types. If you want to selectively enable
 only some watcher
types other than I/O and timers (e.g. prepare,
 embed, async, child...) you can enable
them manually by defining EV_watchertype_ENABLE to 1 instead.

32 - enable all backends

This enables all backends - without this feature, you need to enable at
 least one
backend manually (EV_USE_SELECT is a good choice).

64 - enable OS-specific "helper" APIs

Enable inotify, eventfd, signalfd and similar OS-specific helper APIs by
 default.

Compiling with gcc -Os -DEV_STANDALONE -DEV_USE_EPOLL=1 -DEV_FEATURES=0

reduces the compiled size of libev from 24.7Kb code/2.8Kb data to 6.5Kb
 code/0.3Kb data on
my GNU/Linux amd64 system, while still giving you I/O
 watchers, timers and monotonic clock
support.

With an intelligent-enough linker (gcc+binutils are intelligent enough
 when you use
-Wl,--gc-sections -ffunction-sections) functions unused by
 your program might
be left out as well - a binary starting a timer and an
 I/O watcher then might come out at only
5Kb.

EV_API_STATIC

If this symbol is defined (by default it is not), then all identifiers
 will have static linkage. This
means that libev will not export any
 identifiers, and you cannot link against libev anymore. This
can be useful
 when you embed libev, only want to use libev functions in a single file,
 and do
not want its identifiers to be visible.

To use this, define EV_API_STATIC and include ev.c in the file that
 wants to use libev.

ev.pod

Page 66

This option only works when libev is compiled with a C compiler, as C++
 doesn't support the
required declaration syntax.

EV_AVOID_STDIO

If this is set to 1 at compiletime, then libev will avoid using stdio
 functions (printf, scanf, perror
etc.). This will increase the code size
 somewhat, but if your program doesn't otherwise depend
on stdio and your
 libc allows it, this avoids linking in the stdio library which is quite
 big.

Note that error messages might become less precise when this option is
 enabled.

EV_NSIG

The highest supported signal number, +1 (or, the number of
 signals): Normally, libev tries to
deduce the maximum number of signals
 automatically, but sometimes this fails, in which case
it can be
 specified. Also, using a lower number than detected (32 should be
 good for about
any system in existence) can save some memory, as libev
 statically allocates some 12-24
bytes per signal number.

EV_PID_HASHSIZE

ev_child watchers use a small hash table to distribute workload by
 pid. The default size is
16 (or 1 with EV_FEATURES disabled),
 usually more than enough. If you need to manage
thousands of children you
 might want to increase this value (must be a power of two).

EV_INOTIFY_HASHSIZE

ev_stat watchers use a small hash table to distribute workload by
 inotify watch id. The
default size is 16 (or 1 with EV_FEATURES
 disabled), usually more than enough. If you need
to manage thousands of ev_stat watchers you might want to increase this value (must be a

power of two).

EV_USE_4HEAP

Heaps are not very cache-efficient. To improve the cache-efficiency of the
 timer and periodics
heaps, libev uses a 4-heap when this symbol is defined
 to 1. The 4-heap uses more
complicated (longer) code but has noticeably
 faster performance with many (thousands) of
watchers.

The default is 1, unless EV_FEATURES overrides it, in which case it
 will be 0.

EV_HEAP_CACHE_AT

Heaps are not very cache-efficient. To improve the cache-efficiency of the
 timer and periodics
heaps, libev can cache the timestamp (at) within
 the heap structure (selected by defining
EV_HEAP_CACHE_AT to 1),
 which uses 8-12 bytes more per watcher and a few hundred bytes
more code,
 but avoids random read accesses on heap changes. This improves performance

noticeably with many (hundreds) of watchers.

The default is 1, unless EV_FEATURES overrides it, in which case it
 will be 0.

EV_VERIFY

Controls how much internal verification (see ev_verify ()) will
 be done: If set to 0, no
internal verification code will be compiled
 in. If set to 1, then verification code will be compiled
in, but not
 called. If set to 2, then the internal verification code will be
 called once per loop,
which can slow down libev. If set to 3, then the
 verification code will be called very frequently,
which will slow down
 libev considerably.

The default is 1, unless EV_FEATURES overrides it, in which case it
 will be 0.

EV_COMMON

By default, all watchers have a void *data member. By redefining
 this macro to something
else you can include more and other types of
 members. You have to define it each time you
include one of the files,
 though, and it must be identical each time.

For example, the perl EV module uses something like this:

ev.pod

Page 67

 #define EV_COMMON \
 SV *self; /* contains this struct */ \
 SV *cb_sv, *fh /* note no trailing ";" */

EV_CB_DECLARE (type)

EV_CB_INVOKE (watcher, revents)

ev_set_cb (ev, cb)

Can be used to change the callback member declaration in each watcher,
 and the way
callbacks are invoked and set. Must expand to a struct member
 definition and a statement,
respectively. See the ev.h header file for
 their default definitions. One possible use for
overriding these is to
 avoid the struct ev_loop * as first argument in all cases, or to use

method calls instead of plain function calls in C++.

EXPORTED API SYMBOLS
If you need to re-export the API (e.g. via a DLL) and you need a list of
 exported symbols, you can use
the provided Symbol.* files which list
 all public symbols, one per line:

 Symbols.ev for libev proper
 Symbols.event for the libevent emulation

This can also be used to rename all public symbols to avoid clashes with
 multiple versions of libev
linked together (which is obviously bad in
 itself, but sometimes it is inconvenient to avoid this).

A sed command like this will create wrapper #define's that you need to
 include before including ev.h
:

 <Symbols.ev sed -e "s/.*/#define & myprefix_&/" >wrap.h

This would create a file wrap.h which essentially looks like this:

 #define ev_backend myprefix_ev_backend
 #define ev_check_start myprefix_ev_check_start
 #define ev_check_stop myprefix_ev_check_stop
 ...

EXAMPLES
For a real-world example of a program the includes libev
 verbatim, you can have a look at the EV perl
module
 (http://software.schmorp.de/pkg/EV.html). It has the libev files in
 the libev/ subdirectory and
includes them in the EV/EVAPI.h (public
 interface) and EV.xs (implementation) files. Only the EV.xs
file
 will be compiled. It is pretty complex because it provides its own header
 file.

The usage in rxvt-unicode is simpler. It has a ev_cpp.h header file
 that everybody includes and which
overrides some configure choices:

 #define EV_FEATURES 8
 #define EV_USE_SELECT 1
 #define EV_PREPARE_ENABLE 1
 #define EV_IDLE_ENABLE 1
 #define EV_SIGNAL_ENABLE 1
 #define EV_CHILD_ENABLE 1
 #define EV_USE_STDEXCEPT 0
 #define EV_CONFIG_H <config.h>

 #include "ev++.h"

And a ev_cpp.C implementation file that contains libev proper and is compiled:

ev.pod

Page 68

 #include "ev_cpp.h"
 #include "ev.c"

INTERACTION WITH OTHER PROGRAMS, LIBRARIES OR THE ENVIRONMENT
THREADS AND COROUTINES
THREADS

All libev functions are reentrant and thread-safe unless explicitly
 documented otherwise, but libev
implements no locking itself. This means
 that you can use as many loops as you want in parallel, as
long as there
 are no concurrent calls into any libev function with the same loop
 parameter (
ev_default_* calls have an implicit default loop parameter,
 of course): libev guarantees that
different event loops share no data
 structures that need any locking.

Or to put it differently: calls with different loop parameters can be done
 concurrently from multiple
threads, calls with the same loop parameter
 must be done serially (but can be done from different
threads, as long as
 only one thread ever is inside a call at any point in time, e.g. by using
 a mutex per
loop).

Specifically to support threads (and signal handlers), libev implements
 so-called ev_async watchers,
which allow some limited form of
 concurrency on the same event loop, namely waking it up "from the

outside".

If you want to know which design (one loop, locking, or multiple loops
 without or something else still)
is best for your problem, then I cannot
 help you, but here is some generic advice:

* most applications have a main thread: use the default libev loop
 in that thread, or create a separate
thread running only the default loop.

This helps integrating other libraries or software modules that use libev
 themselves and don't
care/know about threading.

* one loop per thread is usually a good model.

Doing this is almost never wrong, sometimes a better-performance model
 exists, but it is
always a good start.

* other models exist, such as the leader/follower pattern, where one
 loop is handed through multiple
threads in a kind of round-robin fashion.

Choosing a model is hard - look around, learn, know that usually you can do
 better than you
currently do :-)

* often you need to talk to some other thread which blocks in the
 event loop.

ev_async watchers can be used to wake them up from other threads safely
 (or from signal
contexts...).

An example use would be to communicate signals or other events that only
 work in the default
loop by registering the signal watcher with the
 default loop and triggering an ev_async
watcher from the default loop
 watcher callback into the event loop interested in the signal.

See also THREAD LOCKING EXAMPLE.

COROUTINES

Libev is very accommodating to coroutines ("cooperative threads"):
 libev fully supports nesting calls to
its functions from different
 coroutines (e.g. you can call ev_run on the same loop from two
 different
coroutines, and switch freely between both coroutines running
 the loop, as long as you don't confuse
yourself). The only exception is
 that you must not do this from ev_periodic reschedule callbacks.

Care has been taken to ensure that libev does not keep local state inside ev_run, and other calls do
not usually allow for coroutine switches as
 they do not call any callbacks.

ev.pod

Page 69

COMPILER WARNINGS
Depending on your compiler and compiler settings, you might get no or a
 lot of warnings when
compiling libev code. Some people are apparently
 scared by this.

However, these are unavoidable for many reasons. For one, each compiler
 has different warnings,
and each user has different tastes regarding
 warning options. "Warn-free" code therefore cannot be a
goal except when
 targeting a specific compiler and compiler-version.

Another reason is that some compiler warnings require elaborate
 workarounds, or other changes to
the code that make it less clear and less
 maintainable.

And of course, some compiler warnings are just plain stupid, or simply
 wrong (because they don't
actually warn about the condition their message
 seems to warn about). For example, certain older gcc
versions had some
 warnings that resulted in an extreme number of false positives. These have
 been
fixed, but some people still insist on making code warn-free with
 such buggy versions.

While libev is written to generate as few warnings as possible,
 "warn-free" code is not a goal, and it is
recommended not to build libev
 with any compiler warnings enabled unless you are prepared to cope
with
 them (e.g. by ignoring them). Remember that warnings are just that:
 warnings, not errors, or
proof of bugs.

VALGRIND
Valgrind has a special section here because it is a popular tool that is
 highly useful. Unfortunately,
valgrind reports are very hard to interpret.

If you think you found a bug (memory leak, uninitialised data access etc.)
 in libev, then check twice: If
valgrind reports something like:

 ==2274== definitely lost: 0 bytes in 0 blocks.
 ==2274== possibly lost: 0 bytes in 0 blocks.
 ==2274== still reachable: 256 bytes in 1 blocks.

Then there is no memory leak, just as memory accounted to global variables
 is not a memleak - the
memory is still being referenced, and didn't leak.

Similarly, under some circumstances, valgrind might report kernel bugs
 as if it were a bug in libev
(e.g. in realloc or in the poll backend,
 although an acceptable workaround has been found here), or it
might be
 confused.

Keep in mind that valgrind is a very good tool, but only a tool. Don't
 make it into some kind of religion.

If you are unsure about something, feel free to contact the mailing list
 with the full valgrind report and
an explanation on why you think this
 is a bug in libev (best check the archives, too :). However, don't
be
 annoyed when you get a brisk "this is no bug" answer and take the chance
 of learning how to
interpret valgrind properly.

If you need, for some reason, empty reports from valgrind for your project
 I suggest using suppression
lists.

PORTABILITY NOTES
GNU/LINUX 32 BIT LIMITATIONS

GNU/Linux is the only common platform that supports 64 bit file/large file
 interfaces but disables them
by default.

That means that libev compiled in the default environment doesn't support
 files larger than 2GiB or
so, which mainly affects ev_stat watchers.

Unfortunately, many programs try to work around this GNU/Linux issue
 by enabling the large file API,
which makes them incompatible with the
 standard libev compiled for their system.

ev.pod

Page 70

Likewise, libev cannot enable the large file API itself as this would
 suddenly make it incompatible to
the default compile time environment,
 i.e. all programs not using special compile switches.

OS/X AND DARWIN BUGS
The whole thing is a bug if you ask me - basically any system interface
 you touch is broken, whether it
is locales, poll, kqueue or even the
 OpenGL drivers.

kqueue is buggy

The kqueue syscall is broken in all known versions - most versions support
 only sockets, many
support pipes.

Libev tries to work around this by not using kqueue by default on this
 rotten platform, but of course
you can still ask for it when creating a
 loop - embedding a socket-only kqueue loop into a
select-based one is
 probably going to work well.

poll is buggy

Instead of fixing kqueue, Apple replaced their (working) poll
 implementation by something calling
kqueue internally around the 10.5.6
 release, so now kqueue and poll are broken.

Libev tries to work around this by not using poll by default on
 this rotten platform, but of course you
can still ask for it when creating
 a loop.

select is buggy

All that's left is select, and of course Apple found a way to fuck this
 one up as well: On OS/X,
select actively limits the number of file
 descriptors you can pass in to 1024 - your program suddenly
crashes when
 you use more.

There is an undocumented "workaround" for this - defining _DARWIN_UNLIMITED_SELECT, which
libev tries to use, so select should
 work on OS/X.

SOLARIS PROBLEMS AND WORKAROUNDS
errno reentrancy

The default compile environment on Solaris is unfortunately so
 thread-unsafe that you can't even use
components/libraries compiled
 without -D_REENTRANT in a threaded program, which, of course, isn't

defined by default. A valid, if stupid, implementation choice.

If you want to use libev in threaded environments you have to make sure
 it's compiled with
_REENTRANT defined.

Event port backend

The scalable event interface for Solaris is called "event
 ports". Unfortunately, this mechanism is very
buggy in all major
 releases. If you run into high CPU usage, your program freezes or you get
 a large
number of spurious wakeups, make sure you have all the relevant
 and latest kernel patches applied.
No, I don't know which ones, but there
 are multiple ones to apply, and afterwards, event ports actually
work
 great.

If you can't get it to work, you can try running the program by setting
 the environment variable
LIBEV_FLAGS=3 to only allow poll and select backends.

AIX POLL BUG
AIX unfortunately has a broken poll.h header. Libev works around
 this by trying to avoid the poll
backend altogether (i.e. it's not even
 compiled in), which normally isn't a big problem as select
works fine
 with large bitsets on AIX, and AIX is dead anyway.

WIN32 PLATFORM LIMITATIONS AND WORKAROUNDS
General issues

Win32 doesn't support any of the standards (e.g. POSIX) that libev
 requires, and its I/O model is
fundamentally incompatible with the POSIX
 model. Libev still offers limited functionality on this

ev.pod

Page 71

platform in
 the form of the EVBACKEND_SELECT backend, and only supports socket
 descriptors. This
only applies when using Win32 natively, not when using
 e.g. cygwin. Actually, it only applies to the
microsofts own compilers,
 as every compiler comes with a slightly differently broken/incompatible

environment.

Lifting these limitations would basically require the full
 re-implementation of the I/O system. If you are
into this kind of thing,
 then note that glib does exactly that for you in a very portable way (note
 also
that glib is the slowest event library known to man).

There is no supported compilation method available on windows except
 embedding it into other
applications.

Sensible signal handling is officially unsupported by Microsoft - libev
 tries its best, but under most
conditions, signals will simply not work.

Not a libev limitation but worth mentioning: windows apparently doesn't
 accept large writes: instead of
resulting in a partial write, windows will
 either accept everything or return ENOBUFS if the buffer is too
large,
 so make sure you only write small amounts into your sockets (less than a
 megabyte seems
safe, but this apparently depends on the amount of memory
 available).

Due to the many, low, and arbitrary limits on the win32 platform and
 the abysmal performance of
winsockets, using a large number of sockets
 is not recommended (and not reasonable). If your
program needs to use
 more than a hundred or so sockets, then likely it needs to use a totally
 different
implementation for windows, as libev offers the POSIX readiness
 notification model, which cannot be
implemented efficiently on windows
 (due to Microsoft monopoly games).

A typical way to use libev under windows is to embed it (see the embedding
 section for details) and
use the following evwrap.h header file instead
 of ev.h:

 #define EV_STANDALONE /* keeps ev from requiring config.h
*/
 #define EV_SELECT_IS_WINSOCKET 1 /* configure libev for windows select
 */

 #include "ev.h"

And compile the following evwrap.c file into your project (make sure
 you do not compile the ev.c or
any other embedded source files!):

 #include "evwrap.h"
 #include "ev.c"

The winsocket select function

The winsocket select function doesn't follow POSIX in that it
 requires socket handles and not socket
file descriptors (it is
 also extremely buggy). This makes select very inefficient, and also
 requires a
mapping from file descriptors to socket handles (the Microsoft
 C runtime provides the function
_open_osfhandle for this). See the
 discussion of the EV_SELECT_USE_FD_SET,
EV_SELECT_IS_WINSOCKET and EV_FD_TO_WIN32_HANDLE preprocessor symbols for more info.

The configuration for a "naked" win32 using the Microsoft runtime
 libraries and raw winsocket select
is:

 #define EV_USE_SELECT 1
 #define EV_SELECT_IS_WINSOCKET 1 /* forces EV_SELECT_USE_FD_SET, too
*/

Note that winsockets handling of fd sets is O(n), so you can easily get a
 complexity in the O(nÂ²)
range when using win32.

ev.pod

Page 72

Limited number of file descriptors

Windows has numerous arbitrary (and low) limits on things.

Early versions of winsocket's select only supported waiting for a maximum
 of 64 handles (probably
owning to the fact that all windows kernels
 can only wait for 64 things at the same time internally;
Microsoft
 recommends spawning a chain of threads and wait for 63 handles and the
 previous thread
in each. Sounds great!).

Newer versions support more handles, but you need to define FD_SETSIZE
 to some high number
(e.g. 2048) before compiling the winsocket select
 call (which might be in libev or elsewhere, for
example, perl and many
 other interpreters do their own select emulation on windows).

Another limit is the number of file descriptors in the Microsoft runtime
 libraries, which by default is 64
(there must be a hidden 64
 fetish or something like this inside Microsoft). You can increase this
 by
calling _setmaxstdio, which can increase this limit to 2048
 (another arbitrary limit), but is broken in
many versions of the Microsoft
 runtime libraries. This might get you to about 512 or 2048 sockets

(depending on windows version and/or the phase of the moon). To get more,
 you need to wrap all I/O
functions and provide your own fd management, but
 the cost of calling select (O(nÂ²)) will likely make
this unworkable.

PORTABILITY REQUIREMENTS
In addition to a working ISO-C implementation and of course the
 backend-specific APIs, libev relies
on a few additional extensions:

void (*)(ev_watcher_type *, int revents) must have compatible
 calling conventions
regardless of ev_watcher_type *.

Libev assumes not only that all watcher pointers have the same internal
 structure (guaranteed
by POSIX but not by ISO C for example), but it also
 assumes that the same (machine) code
can be used to call any watcher
 callback: The watcher callbacks have different type
signatures, but libev
 calls them using an ev_watcher * internally.

null pointers and integer zero are represented by 0 bytes

Libev uses memset to initialise structs and arrays to 0 bytes, and
 relies on this setting pointers
and integers to null.

pointer accesses must be thread-atomic

Accessing a pointer value must be atomic, it must both be readable and
 writable in one piece -
this is the case on all current architectures.

sig_atomic_t volatile must be thread-atomic as well

The type sig_atomic_t volatile (or whatever is defined as EV_ATOMIC_T) must be
atomic with respect to accesses from different
 threads. This is not part of the specification for
sig_atomic_t, but is
 believed to be sufficiently portable.

sigprocmask must work in a threaded environment

Libev uses sigprocmask to temporarily block signals. This is not
 allowed in a threaded
program (pthread_sigmask has to be used). Typical
 pthread implementations will either
allow sigprocmask in the "main
 thread" or will block signals process-wide, both behaviours
would
 be compatible with libev. Interaction between sigprocmask and pthread_sigmask
could complicate things, however.

The most portable way to handle signals is to block signals in all threads
 except the initial one,
and run the signal handling loop in the initial
 thread as well.

long must be large enough for common memory allocation sizes

To improve portability and simplify its API, libev uses long internally
 instead of size_t when
allocating its data structures. On non-POSIX
 systems (Microsoft...) this might be unexpectedly
low, but is still at
 least 31 bits everywhere, which is enough for hundreds of millions of

ev.pod

Page 73

watchers.

double must hold a time value in seconds with enough accuracy

The type double is used to represent timestamps. It is required to
 have at least 51 bits of
mantissa (and 9 bits of exponent), which is
 good enough for at least into the year 4000 with
millisecond accuracy
 (the design goal for libev). This requirement is overfulfilled by

implementations using IEEE 754, which is basically all existing ones.

With IEEE 754 doubles, you get microsecond accuracy until at least the
 year 2255 (and
millisecond accuracy till the year 287396 - by then, libev
 is either obsolete or somebody
patched it to use long double or
 something like that, just kidding).

If you know of other additional requirements drop me a note.

ALGORITHMIC COMPLEXITIES
In this section the complexities of (many of) the algorithms used inside
 libev will be documented. For
complexity discussions about backends see
 the documentation for ev_default_init.

All of the following are about amortised time: If an array needs to be
 extended, libev needs to realloc
and move the whole array, but this
 happens asymptotically rarer with higher number of elements, so
O(1) might
 mean that libev does a lengthy realloc operation in rare cases, but on
 average it is much
faster and asymptotically approaches constant time.

Starting and stopping timer/periodic watchers: O(log skipped_other_timers)

This means that, when you have a watcher that triggers in one hour and
 there are 100
watchers that would trigger before that, then inserting will
 have to skip roughly seven (ld 100
) of these watchers.

Changing timer/periodic watchers (by autorepeat or calling again): O(log skipped_other_timers)

That means that changing a timer costs less than removing/adding them,
 as only the relative
motion in the event queue has to be paid for.

Starting io/check/prepare/idle/signal/child/fork/async watchers: O(1)

These just add the watcher into an array or at the head of a list.

Stopping check/prepare/idle/fork/async watchers: O(1)

Stopping an io/signal/child watcher: O(number_of_watchers_for_this_(fd/signal/pid %
EV_PID_HASHSIZE))

These watchers are stored in lists, so they need to be walked to find the
 correct watcher to
remove. The lists are usually short (you don't usually
 have many watchers waiting for the
same fd or signal: one is typical, two
 is rare).

Finding the next timer in each loop iteration: O(1)

By virtue of using a binary or 4-heap, the next timer is always found at a
 fixed position in the
storage array.

Each change on a file descriptor per loop iteration: O(number_of_watchers_for_this_fd)

A change means an I/O watcher gets started or stopped, which requires
 libev to recalculate its
status (and possibly tell the kernel, depending
 on backend and whether ev_io_set was
used).

Activating one watcher (putting it into the pending state): O(1)

Priority handling: O(number_of_priorities)

Priorities are implemented by allocating some space for each
 priority. When doing
priority-based operations, libev usually has to
 linearly search all the priorities, but
starting/stopping and activating
 watchers becomes O(1) with respect to priority handling.

Sending an ev_async: O(1)

ev.pod

Page 74

Processing ev_async_send: O(number_of_async_watchers)

Processing signals: O(max_signal_number)

Sending involves a system call iff there were no other ev_async_send
 calls in the current
loop iteration and the loop is currently
 blocked. Checking for async and signal events involves
iterating over all
 running async watchers or all signal numbers.

PORTING FROM LIBEV 3.X TO 4.X
The major version 4 introduced some incompatible changes to the API.

At the moment, the ev.h header file provides compatibility definitions
 for all changes, so most
programs should still compile. The compatibility
 layer might be removed in later versions of libev, so
better update to the
 new API early than late.

EV_COMPAT3 backwards compatibility mechanism

The backward compatibility mechanism can be controlled by EV_COMPAT3. See
PREPROCESSOR SYMBOLS/MACROS in the EMBEDDING
 section.

ev_default_destroy and ev_default_fork have been removed

These calls can be replaced easily by their ev_loop_xxx counterparts:

 ev_loop_destroy (EV_DEFAULT_UC);
 ev_loop_fork (EV_DEFAULT);

function/symbol renames

A number of functions and symbols have been renamed:

 ev_loop => ev_run
 EVLOOP_NONBLOCK => EVRUN_NOWAIT
 EVLOOP_ONESHOT => EVRUN_ONCE

 ev_unloop => ev_break
 EVUNLOOP_CANCEL => EVBREAK_CANCEL
 EVUNLOOP_ONE => EVBREAK_ONE
 EVUNLOOP_ALL => EVBREAK_ALL

 EV_TIMEOUT => EV_TIMER

 ev_loop_count => ev_iteration
 ev_loop_depth => ev_depth
 ev_loop_verify => ev_verify

Most functions working on struct ev_loop objects don't have an ev_loop_ prefix, so it
was removed; ev_loop, ev_unloop and
 associated constants have been renamed to not
collide with the struct
 ev_loop anymore and EV_TIMER now follows the same naming
scheme
 as all other watcher types. Note that ev_loop_fork is still called ev_loop_fork
because it would otherwise clash with the ev_fork
 typedef.

EV_MINIMAL mechanism replaced by EV_FEATURES

The preprocessor symbol EV_MINIMAL has been replaced by a different
 mechanism,
EV_FEATURES. Programs using EV_MINIMAL usually compile
 and work, but the library code
will of course be larger.

GLOSSARY
active

A watcher is active as long as it has been started and not yet stopped.
 See WATCHER
STATES for details.

ev.pod

Page 75

application

In this document, an application is whatever is using libev.

backend

The part of the code dealing with the operating system interfaces.

callback

The address of a function that is called when some event has been
 detected. Callbacks are
being passed the event loop, the watcher that
 received the event, and the actual event bitset.

callback/watcher invocation

The act of calling the callback associated with a watcher.

event

A change of state of some external event, such as data now being available
 for reading on a
file descriptor, time having passed or simply not having
 any other events happening anymore.

In libev, events are represented as single bits (such as EV_READ or EV_TIMER).

event library

A software package implementing an event model and loop.

event loop

An entity that handles and processes external events and converts them
 into callback
invocations.

event model

The model used to describe how an event loop handles and processes
 watchers and events.

pending

A watcher is pending as soon as the corresponding event has been
 detected. See WATCHER
STATES for details.

real time

The physical time that is observed. It is apparently strictly monotonic :)

wall-clock time

The time and date as shown on clocks. Unlike real time, it can actually
 be wrong and jump
forwards and backwards, e.g. when you adjust your
 clock.

watcher

A data structure that describes interest in certain events. Watchers need
 to be started
(attached to an event loop) before they can receive events.

AUTHOR
Marc Lehmann <libev@schmorp.de>, with repeated corrections by Mikael
 Magnusson and Emanuele
Giaquinta, and minor corrections by many others.

