由于自已经编译出来的16M版本的系统在安装软件的时候出现了很多的问题:更新配置或者安装软件的时候总是报签名有问题。无奈之下,决定安装官方的版本: https://downloads.openwrt.org/chaos_calmer/15.05/ar71xx/generic/openwrt-15.05-ar71xx-generic-tl-wr841n-v9-squashfs-factory.bin。心里想着应该可以正常开机吧,可惜了我那16M的flash。
怀着忐忑的心情,开始了第一次的开机。。。
一切都很顺利,kernel log中没有发现异常信息,串口终端也可以正常使用。用df命令查看一下flash的可用空间,奇迹发生了:
root@OpenWrt-wr802n-v1:~# df -h Filesystem Size Used Available Use% Mounted on rootfs 12.6M 3.2M 9.4M 25% / /dev/root 2.3M 2.3M 0 100% /rom tmpfs 14.0M 1.2M 12.8M 9% /tmp /dev/mtdblock3 12.6M 3.2M 9.4M 25% /overlay overlayfs:/overlay 12.6M 3.2M 9.4M 25% / tmpfs 512.0K 0 512.0K 0% /dev
看到了吧,16M的flash可以正常被识别,再看看kernel log:
[ 0.680000] m25p80 spi0.0: found w25q128, expected m25p80 [ 0.690000] m25p80 spi0.0: w25q128 (16384 Kbytes) [ 0.690000] 5 tp-link partitions found on MTD device spi0.0 [ 0.700000] Creating 5 MTD partitions on "spi0.0": [ 0.700000] 0x000000000000-0x000000020000 : "u-boot" [ 0.710000] 0x000000020000-0x00000012c55c : "kernel" [ 0.720000] 0x00000012c55c-0x000000ff0000 : "rootfs" [ 0.720000] mtd: device 2 (rootfs) set to be root filesystem [ 0.730000] 1 squashfs-split partitions found on MTD device rootfs [ 0.740000] 0x000000350000-0x000000ff0000 : "rootfs_data" [ 0.740000] 0x000000ff0000-0x000001000000 : "art" [ 0.750000] 0x000000020000-0x000000ff0000 : "firmware"
貌似已经被识别出来了, rootfs_data是什么?这是怎么做到的?
- 分区表是如何创建的
本能地去查看这个文件: https://dev.openwrt.org/browser/trunk/target/linux/ar71xx/files/arch/mips/ath79/mach-tl-wr841n-v9.c
#include "common.h"
#include "dev-eth.h"
#include "dev-gpio-buttons.h"
#include "dev-leds-gpio.h"
#include "dev-m25p80.h"
#include "dev-wmac.h"
#include "machtypes.h"
#define TL_WR841NV9_GPIO_LED_WLAN 13
#define TL_WR841NV9_GPIO_LED_QSS 3
#define TL_WR841NV9_GPIO_LED_WAN 4
#define TL_WR841NV9_GPIO_LED_LAN1 16
#define TL_WR841NV9_GPIO_LED_LAN2 15
#define TL_WR841NV9_GPIO_LED_LAN3 14
#define TL_WR841NV9_GPIO_LED_LAN4 11
#define TL_WR841NV9_GPIO_BTN_RESET 12
#define TL_WR841NV9_GPIO_BTN_WIFI 17
#define TL_WR841NV9_KEYS_POLL_INTERVAL 20 /* msecs */
#define TL_WR841NV9_KEYS_DEBOUNCE_INTERVAL (3 * TL_WR841NV9_KEYS_POLL_INTERVAL)
static const char *tl_wr841n_v9_part_probes[] = {
"tp-link",
NULL,
};
static struct flash_platform_data tl_wr841n_v9_flash_data = {
.part_probes = tl_wr841n_v9_part_probes,
};
static struct gpio_led tl_wr841n_v9_leds_gpio[] __initdata = {
{
.name = "tp-link:green:lan1",
.gpio = TL_WR841NV9_GPIO_LED_LAN1,
.active_low = 1,
}, {
.name = "tp-link:green:lan2",
.gpio = TL_WR841NV9_GPIO_LED_LAN2,
.active_low = 1,
}, {
.name = "tp-link:green:lan3",
.gpio = TL_WR841NV9_GPIO_LED_LAN3,
.active_low = 1,
}, {
.name = "tp-link:green:lan4",
.gpio = TL_WR841NV9_GPIO_LED_LAN4,
.active_low = 1,
}, {
.name = "tp-link:green:qss",
.gpio = TL_WR841NV9_GPIO_LED_QSS,
.active_low = 1,
}, {
.name = "tp-link:green:wan",
.gpio = TL_WR841NV9_GPIO_LED_WAN,
.active_low = 1,
}, {
.name = "tp-link:green:wlan",
.gpio = TL_WR841NV9_GPIO_LED_WLAN,
.active_low = 1,
},
};
static struct gpio_keys_button tl_wr841n_v9_gpio_keys[] __initdata = {
{
.desc = "Reset button",
.type = EV_KEY,
.code = KEY_RESTART,
.debounce_interval = TL_WR841NV9_KEYS_DEBOUNCE_INTERVAL,
.gpio = TL_WR841NV9_GPIO_BTN_RESET,
.active_low = 1,
}, {
.desc = "WIFI button",
.type = EV_KEY,
.code = KEY_RFKILL,
.debounce_interval = TL_WR841NV9_KEYS_DEBOUNCE_INTERVAL,
.gpio = TL_WR841NV9_GPIO_BTN_WIFI,
.active_low = 1,
}
};
static void __init tl_ap143_setup(void)
{
u8 *mac = (u8 *) KSEG1ADDR(0x1f01fc00);
u8 *ee = (u8 *) KSEG1ADDR(0x1fff1000);
u8 tmpmac[ETH_ALEN];
ath79_register_m25p80(&tl_wr841n_v9_flash_data);
ath79_setup_ar933x_phy4_switch(false, false);
ath79_register_mdio(0, 0x0);
/* LAN */
ath79_eth1_data.phy_if_mode = PHY_INTERFACE_MODE_GMII;
ath79_eth1_data.duplex = DUPLEX_FULL;
ath79_switch_data.phy_poll_mask |= BIT(4);
ath79_init_mac(ath79_eth1_data.mac_addr, mac, 0);
ath79_register_eth(1);
/* WAN */
ath79_switch_data.phy4_mii_en = 1;
ath79_eth0_data.phy_if_mode = PHY_INTERFACE_MODE_MII;
ath79_eth0_data.duplex = DUPLEX_FULL;
ath79_eth0_data.speed = SPEED_100;
ath79_eth0_data.phy_mask = BIT(4);
ath79_init_mac(ath79_eth0_data.mac_addr, mac, 1);
ath79_register_eth(0);
ath79_init_mac(tmpmac, mac, 0);
ath79_register_wmac(ee, tmpmac);
}
static void __init tl_wr841n_v9_setup(void)
{
tl_ap143_setup();
ath79_register_leds_gpio(-1, ARRAY_SIZE(tl_wr841n_v9_leds_gpio),
tl_wr841n_v9_leds_gpio);
ath79_register_gpio_keys_polled(1, TL_WR841NV9_KEYS_POLL_INTERVAL,
ARRAY_SIZE(tl_wr841n_v9_gpio_keys),
tl_wr841n_v9_gpio_keys);
}
MIPS_MACHINE(ATH79_MACH_TL_WR841N_V9, "TL-WR841N-v9", "TP-LINK TL-WR841N/ND v9",
tl_wr841n_v9_setup);
tl_wr841n_v9_part_probes中的”tp-link”是什么?
于是乎又找到了这个文件:https://dev.openwrt.org/browser/trunk/target/linux/ar71xx/files/drivers/mtd/tplinkpart.c
/*
* Copyright (C) 2011 Gabor Juhos <juhosg@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/magic.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#define TPLINK_NUM_PARTS 5
#define TPLINK_HEADER_V1 0x01000000
#define TPLINK_HEADER_V2 0x02000000
#define MD5SUM_LEN 16
#define TPLINK_ART_LEN 0x10000
#define TPLINK_KERNEL_OFFS 0x20000
#define TPLINK_64K_KERNEL_OFFS 0x10000
struct tplink_fw_header {
uint32_t version; /* header version */
char vendor_name[24];
char fw_version[36];
uint32_t hw_id; /* hardware id */
uint32_t hw_rev; /* hardware revision */
uint32_t unk1;
uint8_t md5sum1[MD5SUM_LEN];
uint32_t unk2;
uint8_t md5sum2[MD5SUM_LEN];
uint32_t unk3;
uint32_t kernel_la; /* kernel load address */
uint32_t kernel_ep; /* kernel entry point */
uint32_t fw_length; /* total length of the firmware */
uint32_t kernel_ofs; /* kernel data offset */
uint32_t kernel_len; /* kernel data length */
uint32_t rootfs_ofs; /* rootfs data offset */
uint32_t rootfs_len; /* rootfs data length */
uint32_t boot_ofs; /* bootloader data offset */
uint32_t boot_len; /* bootloader data length */
uint8_t pad[360];
} __attribute__ ((packed));
static struct tplink_fw_header *
tplink_read_header(struct mtd_info *mtd, size_t offset)
{
struct tplink_fw_header *header;
size_t header_len;
size_t retlen;
int ret;
u32 t;
header = vmalloc(sizeof(*header));
if (!header)
goto err;
header_len = sizeof(struct tplink_fw_header);
ret = mtd_read(mtd, offset, header_len, &retlen,
(unsigned char *) header);
if (ret)
goto err_free_header;
if (retlen != header_len)
goto err_free_header;
/* sanity checks */
t = be32_to_cpu(header->version);
if ((t != TPLINK_HEADER_V1) && (t != TPLINK_HEADER_V2))
goto err_free_header;
t = be32_to_cpu(header->kernel_ofs);
if (t != header_len)
goto err_free_header;
return header;
err_free_header:
vfree(header);
err:
return NULL;
}
static int tplink_check_rootfs_magic(struct mtd_info *mtd, size_t offset)
{
u32 magic;
size_t retlen;
int ret;
ret = mtd_read(mtd, offset, sizeof(magic), &retlen,
(unsigned char *) &magic);
if (ret)
return ret;
if (retlen != sizeof(magic))
return -EIO;
if (le32_to_cpu(magic) != SQUASHFS_MAGIC &&
magic != 0x19852003)
return -EINVAL;
return 0;
}
static int tplink_parse_partitions_offset(struct mtd_info *master,
struct mtd_partition **pparts,
struct mtd_part_parser_data *data,
size_t offset)
{
struct mtd_partition *parts;
struct tplink_fw_header *header;
int nr_parts;
size_t art_offset;
size_t rootfs_offset;
size_t squashfs_offset;
int ret;
nr_parts = TPLINK_NUM_PARTS;
parts = kzalloc(nr_parts * sizeof(struct mtd_partition), GFP_KERNEL);
if (!parts) {
ret = -ENOMEM;
goto err;
}
header = tplink_read_header(master, offset);
if (!header) {
pr_notice("%s: no TP-Link header found\n", master->name);
ret = -ENODEV;
goto err_free_parts;
}
squashfs_offset = offset + sizeof(struct tplink_fw_header) +
be32_to_cpu(header->kernel_len);
ret = tplink_check_rootfs_magic(master, squashfs_offset);
if (ret == 0)
rootfs_offset = squashfs_offset;
else
rootfs_offset = offset + be32_to_cpu(header->rootfs_ofs);
art_offset = master->size - TPLINK_ART_LEN;
parts[0].name = "u-boot";
parts[0].offset = 0;
parts[0].size = offset;
parts[0].mask_flags = MTD_WRITEABLE;
parts[1].name = "kernel";
parts[1].offset = offset;
parts[1].size = rootfs_offset - offset;
parts[2].name = "rootfs";
parts[2].offset = rootfs_offset;
parts[2].size = art_offset - rootfs_offset;
parts[3].name = "art";
parts[3].offset = art_offset;
parts[3].size = TPLINK_ART_LEN;
parts[3].mask_flags = MTD_WRITEABLE;
parts[4].name = "firmware";
parts[4].offset = offset;
parts[4].size = art_offset - offset;
vfree(header);
*pparts = parts;
return nr_parts;
err_free_parts:
kfree(parts);
err:
*pparts = NULL;
return ret;
}
static int tplink_parse_partitions(struct mtd_info *master,
struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
return tplink_parse_partitions_offset(master, pparts, data,
TPLINK_KERNEL_OFFS);
}
static int tplink_parse_64k_partitions(struct mtd_info *master,
struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
return tplink_parse_partitions_offset(master, pparts, data,
TPLINK_64K_KERNEL_OFFS);
}
static struct mtd_part_parser tplink_parser = {
.owner = THIS_MODULE,
.parse_fn = tplink_parse_partitions,
.name = "tp-link",
};
static struct mtd_part_parser tplink_64k_parser = {
.owner = THIS_MODULE,
.parse_fn = tplink_parse_64k_partitions,
.name = "tp-link-64k",
};
static int __init tplink_parser_init(void)
{
register_mtd_parser(&tplink_parser);
register_mtd_parser(&tplink_64k_parser);
return 0;
}
module_init(tplink_parser_init);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
分区表原来是这么来的,于是了然了。
- rootfs_data分区又是怎么回事呢
首先看一下flash的布局:
| Layer0 | raw flash(w25q128), 16384KB | |||||
| Layer1 | mtd0
u-boot(tuboot.bin) 128KB |
mtd5 firmware 16192KB=16384-(128+64) |
mtd4 art 64KB |
|||
| Layer2 | mtd1
kernel 大约1MB |
mtd2 rootfs |
||||
| Layer3 | /dev/root
大约2.3MB |
mtd3 rootfs_data 大约12.6MB |
||||
很显然/dev/root就是根文件系统了,而mtd2什么时候被分成了两个部分了呢?
先贴一下代码(OpenWrt 15.05
build_dir/target-mips_34kc_uClibc-0.9.33.2/linux-ar71xx_generic/linux-3.18.23/drivers/mtd/mtdpart.c):
/*
* Simple MTD partitioning layer
*
* Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
* Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
* Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/kmod.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/magic.h>
#include <linux/err.h>
#include "mtdcore.h"
#include "mtdsplit/mtdsplit.h"
#define MTD_ERASE_PARTIAL 0x8000 /* partition only covers parts of an erase block */
/* Our partition linked list */
static LIST_HEAD(mtd_partitions);
static DEFINE_MUTEX(mtd_partitions_mutex);
/* Our partition node structure */
struct mtd_part {
struct mtd_info mtd;
struct mtd_info *master;
uint64_t offset;
struct list_head list;
};
static void mtd_partition_split(struct mtd_info *master, struct mtd_part *part);
/*
* Given a pointer to the MTD object in the mtd_part structure, we can retrieve
* the pointer to that structure with this macro.
*/
#define PART(x) ((struct mtd_part *)(x))
/*
* MTD methods which simply translate the effective address and pass through
* to the _real_ device.
*/
static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, u_char *buf)
{
struct mtd_part *part = PART(mtd);
struct mtd_ecc_stats stats;
int res;
stats = part->master->ecc_stats;
res = part->master->_read(part->master, from + part->offset, len,
retlen, buf);
if (unlikely(mtd_is_eccerr(res)))
mtd->ecc_stats.failed +=
part->master->ecc_stats.failed - stats.failed;
else
mtd->ecc_stats.corrected +=
part->master->ecc_stats.corrected - stats.corrected;
return res;
}
static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
size_t *retlen, void **virt, resource_size_t *phys)
{
struct mtd_part *part = PART(mtd);
return part->master->_point(part->master, from + part->offset, len,
retlen, virt, phys);
}
static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
{
struct mtd_part *part = PART(mtd);
return part->master->_unpoint(part->master, from + part->offset, len);
}
static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
unsigned long len,
unsigned long offset,
unsigned long flags)
{
struct mtd_part *part = PART(mtd);
offset += part->offset;
return part->master->_get_unmapped_area(part->master, len, offset,
flags);
}
static int part_read_oob(struct mtd_info *mtd, loff_t from,
struct mtd_oob_ops *ops)
{
struct mtd_part *part = PART(mtd);
int res;
if (from >= mtd->size)
return -EINVAL;
if (ops->datbuf && from + ops->len > mtd->size)
return -EINVAL;
/*
* If OOB is also requested, make sure that we do not read past the end
* of this partition.
*/
if (ops->oobbuf) {
size_t len, pages;
if (ops->mode == MTD_OPS_AUTO_OOB)
len = mtd->oobavail;
else
len = mtd->oobsize;
pages = mtd_div_by_ws(mtd->size, mtd);
pages -= mtd_div_by_ws(from, mtd);
if (ops->ooboffs + ops->ooblen > pages * len)
return -EINVAL;
}
res = part->master->_read_oob(part->master, from + part->offset, ops);
if (unlikely(res)) {
if (mtd_is_bitflip(res))
mtd->ecc_stats.corrected++;
if (mtd_is_eccerr(res))
mtd->ecc_stats.failed++;
}
return res;
}
static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct mtd_part *part = PART(mtd);
return part->master->_read_user_prot_reg(part->master, from, len,
retlen, buf);
}
static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
struct mtd_part *part = PART(mtd);
return part->master->_get_user_prot_info(part->master, len, retlen,
buf);
}
static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct mtd_part *part = PART(mtd);
return part->master->_read_fact_prot_reg(part->master, from, len,
retlen, buf);
}
static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
size_t *retlen, struct otp_info *buf)
{
struct mtd_part *part = PART(mtd);
return part->master->_get_fact_prot_info(part->master, len, retlen,
buf);
}
static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct mtd_part *part = PART(mtd);
return part->master->_write(part->master, to + part->offset, len,
retlen, buf);
}
static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
size_t *retlen, const u_char *buf)
{
struct mtd_part *part = PART(mtd);
return part->master->_panic_write(part->master, to + part->offset, len,
retlen, buf);
}
static int part_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct mtd_part *part = PART(mtd);
if (to >= mtd->size)
return -EINVAL;
if (ops->datbuf && to + ops->len > mtd->size)
return -EINVAL;
return part->master->_write_oob(part->master, to + part->offset, ops);
}
static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct mtd_part *part = PART(mtd);
return part->master->_write_user_prot_reg(part->master, from, len,
retlen, buf);
}
static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
size_t len)
{
struct mtd_part *part = PART(mtd);
return part->master->_lock_user_prot_reg(part->master, from, len);
}
static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
unsigned long count, loff_t to, size_t *retlen)
{
struct mtd_part *part = PART(mtd);
return part->master->_writev(part->master, vecs, count,
to + part->offset, retlen);
}
static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
{
struct mtd_part *part = PART(mtd);
int ret;
instr->partial_start = false;
if (mtd->flags & MTD_ERASE_PARTIAL) {
size_t readlen = 0;
u64 mtd_ofs;
instr->erase_buf = kmalloc(part->master->erasesize, GFP_ATOMIC);
if (!instr->erase_buf)
return -ENOMEM;
mtd_ofs = part->offset + instr->addr;
instr->erase_buf_ofs = do_div(mtd_ofs, part->master->erasesize);
if (instr->erase_buf_ofs > 0) {
instr->addr -= instr->erase_buf_ofs;
ret = mtd_read(part->master,
instr->addr + part->offset,
part->master->erasesize,
&readlen, instr->erase_buf);
instr->len += instr->erase_buf_ofs;
instr->partial_start = true;
} else {
mtd_ofs = part->offset + part->mtd.size;
instr->erase_buf_ofs = part->master->erasesize -
do_div(mtd_ofs, part->master->erasesize);
if (instr->erase_buf_ofs > 0) {
instr->len += instr->erase_buf_ofs;
ret = mtd_read(part->master,
part->offset + instr->addr +
instr->len - part->master->erasesize,
part->master->erasesize, &readlen,
instr->erase_buf);
} else {
ret = 0;
}
}
if (ret < 0) {
kfree(instr->erase_buf);
return ret;
}
}
instr->addr += part->offset;
ret = part->master->_erase(part->master, instr);
if (ret) {
if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= part->offset;
instr->addr -= part->offset;
if (mtd->flags & MTD_ERASE_PARTIAL)
kfree(instr->erase_buf);
}
return ret;
}
void mtd_erase_callback(struct erase_info *instr)
{
if (instr->mtd->_erase == part_erase) {
struct mtd_part *part = PART(instr->mtd);
size_t wrlen = 0;
if (instr->mtd->flags & MTD_ERASE_PARTIAL) {
if (instr->partial_start) {
part->master->_write(part->master,
instr->addr, instr->erase_buf_ofs,
&wrlen, instr->erase_buf);
instr->addr += instr->erase_buf_ofs;
} else {
instr->len -= instr->erase_buf_ofs;
part->master->_write(part->master,
instr->addr + instr->len,
instr->erase_buf_ofs, &wrlen,
instr->erase_buf +
part->master->erasesize -
instr->erase_buf_ofs);
}
kfree(instr->erase_buf);
}
if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
instr->fail_addr -= part->offset;
instr->addr -= part->offset;
}
if (instr->callback)
instr->callback(instr);
}
EXPORT_SYMBOL_GPL(mtd_erase_callback);
static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct mtd_part *part = PART(mtd);
return part->master->_lock(part->master, ofs + part->offset, len);
}
static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct mtd_part *part = PART(mtd);
ofs += part->offset;
if (mtd->flags & MTD_ERASE_PARTIAL) {
/* round up len to next erasesize and round down offset to prev block */
len = (mtd_div_by_eb(len, part->master) + 1) * part->master->erasesize;
ofs &= ~(part->master->erasesize - 1);
}
return part->master->_unlock(part->master, ofs, len);
}
static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
struct mtd_part *part = PART(mtd);
return part->master->_is_locked(part->master, ofs + part->offset, len);
}
static void part_sync(struct mtd_info *mtd)
{
struct mtd_part *part = PART(mtd);
part->master->_sync(part->master);
}
static int part_suspend(struct mtd_info *mtd)
{
struct mtd_part *part = PART(mtd);
return part->master->_suspend(part->master);
}
static void part_resume(struct mtd_info *mtd)
{
struct mtd_part *part = PART(mtd);
part->master->_resume(part->master);
}
static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_part *part = PART(mtd);
ofs += part->offset;
return part->master->_block_isreserved(part->master, ofs);
}
static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_part *part = PART(mtd);
ofs += part->offset;
return part->master->_block_isbad(part->master, ofs);
}
static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
struct mtd_part *part = PART(mtd);
int res;
ofs += part->offset;
res = part->master->_block_markbad(part->master, ofs);
if (!res)
mtd->ecc_stats.badblocks++;
return res;
}
static inline void free_partition(struct mtd_part *p)
{
kfree(p->mtd.name);
kfree(p);
}
/*
* This function unregisters and destroy all slave MTD objects which are
* attached to the given master MTD object.
*/
int del_mtd_partitions(struct mtd_info *master)
{
struct mtd_part *slave, *next;
int ret, err = 0;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry_safe(slave, next, &mtd_partitions, list)
if (slave->master == master) {
ret = del_mtd_device(&slave->mtd);
if (ret < 0) {
err = ret;
continue;
}
list_del(&slave->list);
free_partition(slave);
}
mutex_unlock(&mtd_partitions_mutex);
return err;
}
static struct mtd_part *allocate_partition(struct mtd_info *master,
const struct mtd_partition *part, int partno,
uint64_t cur_offset)
{
struct mtd_part *slave;
char *name;
/* allocate the partition structure */
slave = kzalloc(sizeof(*slave), GFP_KERNEL);
name = kstrdup(part->name, GFP_KERNEL);
if (!name || !slave) {
printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
master->name);
kfree(name);
kfree(slave);
return ERR_PTR(-ENOMEM);
}
/* set up the MTD object for this partition */
slave->mtd.type = master->type;
slave->mtd.flags = master->flags & ~part->mask_flags;
slave->mtd.size = part->size;
slave->mtd.writesize = master->writesize;
slave->mtd.writebufsize = master->writebufsize;
slave->mtd.oobsize = master->oobsize;
slave->mtd.oobavail = master->oobavail;
slave->mtd.subpage_sft = master->subpage_sft;
slave->mtd.name = name;
slave->mtd.owner = master->owner;
slave->mtd.backing_dev_info = master->backing_dev_info;
/* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
* to have the same data be in two different partitions.
*/
slave->mtd.dev.parent = master->dev.parent;
slave->mtd._read = part_read;
slave->mtd._write = part_write;
if (master->_panic_write)
slave->mtd._panic_write = part_panic_write;
if (master->_point && master->_unpoint) {
slave->mtd._point = part_point;
slave->mtd._unpoint = part_unpoint;
}
if (master->_get_unmapped_area)
slave->mtd._get_unmapped_area = part_get_unmapped_area;
if (master->_read_oob)
slave->mtd._read_oob = part_read_oob;
if (master->_write_oob)
slave->mtd._write_oob = part_write_oob;
if (master->_read_user_prot_reg)
slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
if (master->_read_fact_prot_reg)
slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
if (master->_write_user_prot_reg)
slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
if (master->_lock_user_prot_reg)
slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
if (master->_get_user_prot_info)
slave->mtd._get_user_prot_info = part_get_user_prot_info;
if (master->_get_fact_prot_info)
slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
if (master->_sync)
slave->mtd._sync = part_sync;
if (!partno && !master->dev.class && master->_suspend &&
master->_resume) {
slave->mtd._suspend = part_suspend;
slave->mtd._resume = part_resume;
}
if (master->_writev)
slave->mtd._writev = part_writev;
if (master->_lock)
slave->mtd._lock = part_lock;
if (master->_unlock)
slave->mtd._unlock = part_unlock;
if (master->_is_locked)
slave->mtd._is_locked = part_is_locked;
if (master->_block_isreserved)
slave->mtd._block_isreserved = part_block_isreserved;
if (master->_block_isbad)
slave->mtd._block_isbad = part_block_isbad;
if (master->_block_markbad)
slave->mtd._block_markbad = part_block_markbad;
slave->mtd._erase = part_erase;
slave->master = master;
slave->offset = part->offset;
if (slave->offset == MTDPART_OFS_APPEND)
slave->offset = cur_offset;
if (slave->offset == MTDPART_OFS_NXTBLK) {
/* Round up to next erasesize */
slave->offset = mtd_roundup_to_eb(cur_offset, master);
if (slave->offset != cur_offset)
printk(KERN_NOTICE "Moving partition %d: "
"0x%012llx -> 0x%012llx\n", partno,
(unsigned long long)cur_offset, (unsigned long long)slave->offset);
}
if (slave->offset == MTDPART_OFS_RETAIN) {
slave->offset = cur_offset;
if (master->size - slave->offset >= slave->mtd.size) {
slave->mtd.size = master->size - slave->offset
- slave->mtd.size;
} else {
printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
part->name, master->size - slave->offset,
slave->mtd.size);
/* register to preserve ordering */
goto out_register;
}
}
if (slave->mtd.size == MTDPART_SIZ_FULL)
slave->mtd.size = master->size - slave->offset;
printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
/* let's do some sanity checks */
if (slave->offset >= master->size) {
/* let's register it anyway to preserve ordering */
slave->offset = 0;
slave->mtd.size = 0;
printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
part->name);
goto out_register;
}
if (slave->offset + slave->mtd.size > master->size) {
slave->mtd.size = master->size - slave->offset;
printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
part->name, master->name, (unsigned long long)slave->mtd.size);
}
if (master->numeraseregions > 1) {
/* Deal with variable erase size stuff */
int i, max = master->numeraseregions;
u64 end = slave->offset + slave->mtd.size;
struct mtd_erase_region_info *regions = master->eraseregions;
/* Find the first erase regions which is part of this
* partition. */
for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
;
/* The loop searched for the region _behind_ the first one */
if (i > 0)
i--;
/* Pick biggest erasesize */
for (; i < max && regions[i].offset < end; i++) {
if (slave->mtd.erasesize < regions[i].erasesize) {
slave->mtd.erasesize = regions[i].erasesize;
}
}
BUG_ON(slave->mtd.erasesize == 0);
} else {
/* Single erase size */
slave->mtd.erasesize = master->erasesize;
}
if ((slave->mtd.flags & MTD_WRITEABLE) &&
mtd_mod_by_eb(slave->offset, &slave->mtd)) {
/* Doesn't start on a boundary of major erase size */
slave->mtd.flags |= MTD_ERASE_PARTIAL;
if (((u32) slave->mtd.size) > master->erasesize)
slave->mtd.flags &= ~MTD_WRITEABLE;
else
slave->mtd.erasesize = slave->mtd.size;
}
if ((slave->mtd.flags & MTD_WRITEABLE) &&
mtd_mod_by_eb(slave->offset + slave->mtd.size, &slave->mtd)) {
slave->mtd.flags |= MTD_ERASE_PARTIAL;
if ((u32) slave->mtd.size > master->erasesize)
slave->mtd.flags &= ~MTD_WRITEABLE;
else
slave->mtd.erasesize = slave->mtd.size;
}
slave->mtd.ecclayout = master->ecclayout;
slave->mtd.ecc_step_size = master->ecc_step_size;
slave->mtd.ecc_strength = master->ecc_strength;
slave->mtd.bitflip_threshold = master->bitflip_threshold;
if (master->_block_isbad) {
uint64_t offs = 0;
while (offs < slave->mtd.size) {
if (mtd_block_isreserved(master, offs + slave->offset))
slave->mtd.ecc_stats.bbtblocks++;
else if (mtd_block_isbad(master, offs + slave->offset))
slave->mtd.ecc_stats.badblocks++;
offs += slave->mtd.erasesize;
}
}
out_register:
return slave;
}
static int
__mtd_add_partition(struct mtd_info *master, const char *name,
long long offset, long long length, bool dup_check)
{
struct mtd_partition part;
struct mtd_part *p, *new;
uint64_t start, end;
int ret = 0;
/* the direct offset is expected */
if (offset == MTDPART_OFS_APPEND ||
offset == MTDPART_OFS_NXTBLK)
return -EINVAL;
if (length == MTDPART_SIZ_FULL)
length = master->size - offset;
if (length <= 0)
return -EINVAL;
part.name = name;
part.size = length;
part.offset = offset;
part.mask_flags = 0;
part.ecclayout = NULL;
new = allocate_partition(master, &part, -1, offset);
if (IS_ERR(new))
return PTR_ERR(new);
start = offset;
end = offset + length;
mutex_lock(&mtd_partitions_mutex);
if (dup_check) {
list_for_each_entry(p, &mtd_partitions, list)
if (p->master == master) {
if ((start >= p->offset) &&
(start < (p->offset + p->mtd.size)))
goto err_inv;
if ((end >= p->offset) &&
(end < (p->offset + p->mtd.size)))
goto err_inv;
}
}
list_add(&new->list, &mtd_partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(&new->mtd);
mtd_partition_split(master, new);
return ret;
err_inv:
mutex_unlock(&mtd_partitions_mutex);
free_partition(new);
return -EINVAL;
}
EXPORT_SYMBOL_GPL(mtd_add_partition);
int mtd_add_partition(struct mtd_info *master, const char *name,
long long offset, long long length)
{
return __mtd_add_partition(master, name, offset, length, true);
}
int mtd_del_partition(struct mtd_info *master, int partno)
{
struct mtd_part *slave, *next;
int ret = -EINVAL;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry_safe(slave, next, &mtd_partitions, list)
if ((slave->master == master) &&
(slave->mtd.index == partno)) {
ret = del_mtd_device(&slave->mtd);
if (ret < 0)
break;
list_del(&slave->list);
free_partition(slave);
break;
}
mutex_unlock(&mtd_partitions_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(mtd_del_partition);
static int
run_parsers_by_type(struct mtd_part *slave, enum mtd_parser_type type)
{
struct mtd_partition *parts;
int nr_parts;
int i;
nr_parts = parse_mtd_partitions_by_type(&slave->mtd, type, &parts,
NULL);
if (nr_parts <= 0)
return nr_parts;
if (WARN_ON(!parts))
return 0;
for (i = 0; i < nr_parts; i++) {
/* adjust partition offsets */
parts[i].offset += slave->offset;
__mtd_add_partition(slave->master,
parts[i].name,
parts[i].offset,
parts[i].size,
false);
}
kfree(parts);
return nr_parts;
}
static inline unsigned long
mtd_pad_erasesize(struct mtd_info *mtd, int offset, int len)
{
unsigned long mask = mtd->erasesize - 1;
len += offset & mask;
len = (len + mask) & ~mask;
len -= offset & mask;
return len;
}
static int split_squashfs(struct mtd_info *master, int offset, int *split_offset)
{
size_t squashfs_len;
int len, ret;
ret = mtd_get_squashfs_len(master, offset, &squashfs_len);
if (ret)
return ret;
len = mtd_pad_erasesize(master, offset, squashfs_len);
*split_offset = offset + len;
return 0;
}
static void split_rootfs_data(struct mtd_info *master, struct mtd_part *part)
{
unsigned int split_offset = 0;
unsigned int split_size;
int ret;
ret = split_squashfs(master, part->offset, &split_offset);
if (ret)
return;
if (split_offset <= 0)
return;
if (config_enabled(CONFIG_MTD_SPLIT_SQUASHFS_ROOT))
pr_err("Dedicated partitioner didn't create \"rootfs_data\" partition, please fill a bug report!\n");
else
pr_warn("Support for built-in \"rootfs_data\" splitter will be removed, please use CONFIG_MTD_SPLIT_SQUASHFS_ROOT\n");
split_size = part->mtd.size - (split_offset - part->offset);
printk(KERN_INFO "mtd: partition \"%s\" created automatically, ofs=0x%x, len=0x%x\n",
ROOTFS_SPLIT_NAME, split_offset, split_size);
__mtd_add_partition(master, ROOTFS_SPLIT_NAME, split_offset,
split_size, false);
}
#define UBOOT_MAGIC 0x27051956
static void split_uimage(struct mtd_info *master, struct mtd_part *part)
{
struct {
__be32 magic;
__be32 pad[2];
__be32 size;
} hdr;
size_t len;
if (mtd_read(master, part->offset, sizeof(hdr), &len, (void *) &hdr))
return;
if (len != sizeof(hdr) || hdr.magic != cpu_to_be32(UBOOT_MAGIC))
return;
len = be32_to_cpu(hdr.size) + 0x40;
len = mtd_pad_erasesize(master, part->offset, len);
if (len + master->erasesize > part->mtd.size)
return;
if (config_enabled(CONFIG_MTD_SPLIT_UIMAGE_FW))
pr_err("Dedicated partitioner didn't split firmware partition, please fill a bug report!\n");
else
pr_warn("Support for built-in firmware splitter will be removed, please use CONFIG_MTD_SPLIT_UIMAGE_FW\n");
__mtd_add_partition(master, "rootfs", part->offset + len,
part->mtd.size - len, false);
}
#ifdef CONFIG_MTD_SPLIT_FIRMWARE_NAME
#define SPLIT_FIRMWARE_NAME CONFIG_MTD_SPLIT_FIRMWARE_NAME
#else
#define SPLIT_FIRMWARE_NAME "unused"
#endif
static void split_firmware(struct mtd_info *master, struct mtd_part *part)
{
int ret;
ret = run_parsers_by_type(part, MTD_PARSER_TYPE_FIRMWARE);
if (ret > 0)
return;
if (config_enabled(CONFIG_MTD_UIMAGE_SPLIT))
split_uimage(master, part);
}
void __weak arch_split_mtd_part(struct mtd_info *master, const char *name,
int offset, int size)
{
}
static void mtd_partition_split(struct mtd_info *master, struct mtd_part *part)
{
static int rootfs_found = 0;
if (rootfs_found)
return;
if (!strcmp(part->mtd.name, "rootfs")) {
int num = run_parsers_by_type(part, MTD_PARSER_TYPE_ROOTFS);
if (num <= 0 && config_enabled(CONFIG_MTD_ROOTFS_SPLIT))
split_rootfs_data(master, part);
rootfs_found = 1;
}
if (!strcmp(part->mtd.name, SPLIT_FIRMWARE_NAME) &&
config_enabled(CONFIG_MTD_SPLIT_FIRMWARE))
split_firmware(master, part);
arch_split_mtd_part(master, part->mtd.name, part->offset,
part->mtd.size);
}
/*
* This function, given a master MTD object and a partition table, creates
* and registers slave MTD objects which are bound to the master according to
* the partition definitions.
*
* We don't register the master, or expect the caller to have done so,
* for reasons of data integrity.
*/
int add_mtd_partitions(struct mtd_info *master,
const struct mtd_partition *parts,
int nbparts)
{
struct mtd_part *slave;
uint64_t cur_offset = 0;
int i;
printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
for (i = 0; i < nbparts; i++) {
slave = allocate_partition(master, parts + i, i, cur_offset);
if (IS_ERR(slave))
return PTR_ERR(slave);
mutex_lock(&mtd_partitions_mutex);
list_add(&slave->list, &mtd_partitions);
mutex_unlock(&mtd_partitions_mutex);
add_mtd_device(&slave->mtd);
mtd_partition_split(master, slave);
cur_offset = slave->offset + slave->mtd.size;
}
return 0;
}
static DEFINE_SPINLOCK(part_parser_lock);
static LIST_HEAD(part_parsers);
static struct mtd_part_parser *get_partition_parser(const char *name)
{
struct mtd_part_parser *p, *ret = NULL;
spin_lock(&part_parser_lock);
list_for_each_entry(p, &part_parsers, list)
if (!strcmp(p->name, name) && try_module_get(p->owner)) {
ret = p;
break;
}
spin_unlock(&part_parser_lock);
return ret;
}
#define put_partition_parser(p) do { module_put((p)->owner); } while (0)
static struct mtd_part_parser *
get_partition_parser_by_type(enum mtd_parser_type type,
struct mtd_part_parser *start)
{
struct mtd_part_parser *p, *ret = NULL;
spin_lock(&part_parser_lock);
p = list_prepare_entry(start, &part_parsers, list);
if (start)
put_partition_parser(start);
list_for_each_entry_continue(p, &part_parsers, list) {
if (p->type == type && try_module_get(p->owner)) {
ret = p;
break;
}
}
spin_unlock(&part_parser_lock);
return ret;
}
void register_mtd_parser(struct mtd_part_parser *p)
{
spin_lock(&part_parser_lock);
list_add(&p->list, &part_parsers);
spin_unlock(&part_parser_lock);
}
EXPORT_SYMBOL_GPL(register_mtd_parser);
void deregister_mtd_parser(struct mtd_part_parser *p)
{
spin_lock(&part_parser_lock);
list_del(&p->list);
spin_unlock(&part_parser_lock);
}
EXPORT_SYMBOL_GPL(deregister_mtd_parser);
/*
* Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
* are changing this array!
*/
static const char * const default_mtd_part_types[] = {
"cmdlinepart",
"ofpart",
NULL
};
/**
* parse_mtd_partitions - parse MTD partitions
* @master: the master partition (describes whole MTD device)
* @types: names of partition parsers to try or %NULL
* @pparts: array of partitions found is returned here
* @data: MTD partition parser-specific data
*
* This function tries to find partition on MTD device @master. It uses MTD
* partition parsers, specified in @types. However, if @types is %NULL, then
* the default list of parsers is used. The default list contains only the
* "cmdlinepart" and "ofpart" parsers ATM.
* Note: If there are more then one parser in @types, the kernel only takes the
* partitions parsed out by the first parser.
*
* This function may return:
* o a negative error code in case of failure
* o zero if no partitions were found
* o a positive number of found partitions, in which case on exit @pparts will
* point to an array containing this number of &struct mtd_info objects.
*/
int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct mtd_part_parser *parser;
int ret = 0;
if (!types)
types = default_mtd_part_types;
for ( ; ret <= 0 && *types; types++) {
parser = get_partition_parser(*types);
if (!parser && !request_module("%s", *types))
parser = get_partition_parser(*types);
if (!parser)
continue;
ret = (*parser->parse_fn)(master, pparts, data);
put_partition_parser(parser);
if (ret > 0) {
printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
ret, parser->name, master->name);
break;
}
}
return ret;
}
int parse_mtd_partitions_by_type(struct mtd_info *master,
enum mtd_parser_type type,
struct mtd_partition **pparts,
struct mtd_part_parser_data *data)
{
struct mtd_part_parser *prev = NULL;
int ret = 0;
while (1) {
struct mtd_part_parser *parser;
parser = get_partition_parser_by_type(type, prev);
if (!parser)
break;
ret = (*parser->parse_fn)(master, pparts, data);
if (ret > 0) {
put_partition_parser(parser);
printk(KERN_NOTICE
"%d %s partitions found on MTD device %s\n",
ret, parser->name, master->name);
break;
}
prev = parser;
}
return ret;
}
EXPORT_SYMBOL_GPL(parse_mtd_partitions_by_type);
int mtd_is_partition(const struct mtd_info *mtd)
{
struct mtd_part *part;
int ispart = 0;
mutex_lock(&mtd_partitions_mutex);
list_for_each_entry(part, &mtd_partitions, list)
if (&part->mtd == mtd) {
ispart = 1;
break;
}
mutex_unlock(&mtd_partitions_mutex);
return ispart;
}
EXPORT_SYMBOL_GPL(mtd_is_partition);
struct mtd_info *mtdpart_get_master(const struct mtd_info *mtd)
{
if (!mtd_is_partition(mtd))
return (struct mtd_info *)mtd;
return PART(mtd)->master;
}
EXPORT_SYMBOL_GPL(mtdpart_get_master);
uint64_t mtdpart_get_offset(const struct mtd_info *mtd)
{
if (!mtd_is_partition(mtd))
return 0;
return PART(mtd)->offset;
}
EXPORT_SYMBOL_GPL(mtdpart_get_offset);
/* Returns the size of the entire flash chip */
uint64_t mtd_get_device_size(const struct mtd_info *mtd)
{
if (!mtd_is_partition(mtd))
return mtd->size;
return PART(mtd)->master->size;
}
EXPORT_SYMBOL_GPL(mtd_get_device_size);
mtd_device_parse_register()->parse_mtd_partitions() -> tplink_parse_partitions()
从代码()中可以看到,这里从Flash中得到了5个分区:u-boot, kernel, rootfs, art和firmware分区,其中firmware分区中又包含了kernel和rootfs分区,官方image也就在这里面。下面是将rootfs分区分解出rootfs_data分区:
-> add_mtd_partitions()
-> mtd_partition_split(“rootfs”)
-> split_rootfs_data(“rootfs”)
-> __mtd_add_partition(“rootfs_data”)
NOTE:
rootfs分区使用的文件系统为SquashFS, 是ro (readonly)的文件系统。
rootfs_data分区使用的文件系统为JFFS2(全称为Journalling Flash File System v2 ), 是带日志的,不怕意外断电,所以请放心使用。
相关文档请看这里:
- https://wiki.openwrt.org/doc/techref/flash.layout
- https://dev.openwrt.org/browser/trunk/target/linux/ar71xx/files/drivers/mtd/tplinkpart.c?rev=46662
- https://wiki.openwrt.org/doc/techref/filesystems#squashfs
- https://wiki.openwrt.org/doc/techref/filesystems#overlayfs
哥们,tlwr841n-v9是4M的flash的固件,刷到16M的flash中,是不是还要更改uboot的启动参数,kernel的启动地址啥的?
这要看你怎么写固件:
-如果通过flash编程器写入,那就不影响。我用flash编程器将4M的固件写入到16M的flash中,也可以正常使用。
-通过这种方式: 使用BOOTLOADER的自动更新固件功能(https://www.brobwind.com/archives/459)就需要重新编译bootloader。
-还有这种方式: https://www.brobwind.com/archives/387 也应该不影响
1
博主你好,请问如果要在默认的u-boot, kernel, rootfs, art和firmware这几个分区之外添加额外的分区,应该修改哪些文件的哪些信息呢,最近有这个需求,求指点!不胜感激
你需要在uboot & kenrel里面修改分区表信息,分区表的信息应该是类似偏移+大小的形式,如文章中的 tplink_parse_partitions_offset, 你找找看。
1
1